首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we have elucidated in detail the folding properties of two perylene bisimide (PBI) foldamers composed of two and three PBI units, respectively, attached to a phenylene ethynylene backbone. The folding behaviors of these new PBI folda‐dimer and trimer have been studied by solvent‐dependent UV/Vis absorption and 1D and 2D NMR spectroscopy, revealing facile folding of both systems in tetrahydrofuran (THF). In CHCl3 the dimer exists in extended (unfolded) conformation, whereas partially folded conformations are observed in the trimer. Temperature‐dependent 1H NMR spectroscopic studies in [D8]THF revealed intramolecular dynamic processes for both PBI foldamers due to, on the one hand, hindered rotation around C?N imide bonds and, on the other hand, backbone flapping; the latter process being energetically more demanding as it was observed only at elevated temperature. The structural features of folded conformations of the dimer and trimer have been elucidated by different 2D‐NMR spectroscopy (e.g., ROESY and DOSY) in [D8]THF. The energetics of folding processes for the PBI dimer and trimer have been assessed by calculations applying various methods, particularly the semiempirical PM6‐DH2 and the more sophisticated B97D approach, in which relevant dispersion corrections are included. These calculations corroborate the results of NMR spectroscopic studies. Folding features in the excited states of these PBI foldamers have been characterized by using time‐resolved fluorescence and transient absorption spectroscopy in THF and CHCl3, exhibiting similar solvent‐dependent behavior as observed for the ground state. Interestingly, photoinduced electron transfer (PET) process from electron‐donating backbone to electron‐deficient PBI core for extended, but not for folded, conformations was observed, which can be explained by a fast relaxation of excited PBI stacks in the folded conformation into fluorescent excimer states.  相似文献   

2.
Four para‐linked or meta‐linked cationic water‐soluble fluorene‐containing poly(aryleneethynylene)s (PAEs) were synthesized to investigate the solvent‐induced π‐stacked self‐assembly. These PAE backbones are composed of fluorenylene and phenylene units, which are alternatively linked by ethynylene bonds. UV–vis absorption and photoluminescence spectra were used to study their conformational changes as solvent was gradually changed from MeOH to H2O. In pure water, with gradually increased meta‐phenylene content (0, 50, and 100%), they underwent a gradual transition process of conformation from disordered aggregate structure to helix structure, which was not compactly folded. Moreover, the polymer with an ammonium‐functionalized side chain on the meta‐phenylene unit appeared to adopt a more incompact or extended helix conformation than the corresponding one without this side chain. Furthermore, the conformational changes of these cationic PAEs in H2O were used to study their effects on biological detection. Rubredoxin (Rd), a type of anionic iron–sulfur‐based electron transfer protein, was chosen to act as biological analyte in the fluorescence quenching experiments of these polymers. Preliminary results suggest that they all exhibit amplified fluorescence quenching, and that the polymer with more features of helix conformation tends to be quenched by Rd more efficiently. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5424–5437, 2006  相似文献   

3.
Bis‐triarylamine 2 and cyclometalated diruthenium 6 (PF6)2 with a linear trans,trans‐urea bridge have been prepared, together with the bis‐triarylamine 3 and cyclometalated diruthenium 8 (PF6)2 with a folded cis,cisN,N‐dimethylurea bridge. The linear or folded conformations of these molecules are supported by single‐crystal X‐ray structures of 2 , 3 , and other related compounds. These compounds display two consecutive anodic redox waves (N . +/0 or RuIII/II processes) with a potential separation of 110–170 mV. This suggests that an efficient electronic coupling is present between two redox termini through the cross‐conjugated urea bridge. The degree of electronic coupling has been investigated by using spectroelectrochemical measurements. Distinct intervalence charge‐transfer (IVCT) transitions have been observed for mixed‐valent (MV) compounds with a linear conformation. The IVCT transitions can also be identified for the folded MV compounds, albeit with a much weaker intensity. DFT results support that the electronic communication occurs by a through‐bond and through‐space pathway for the linear and folded compounds, respectively. The IVCT transitions of the MV compounds have been reproduced by TDDFT calculations. For the purpose of comparison, a bistriarylamine and a diruthenium complex with an imidazolidin‐2‐one bridge and a urea‐containing mono‐triarylamine and monoruthenium complex have been synthesized and studied.  相似文献   

4.
Donor–acceptor distance, orientation, and photoexcitation wavelength are key factors in governing the efficiency and mechanism of electron‐transfer reactions both in natural and synthetic systems. Although distance and orientation effects have been successfully demonstrated in simple donor–acceptor dyads, revealing excitation‐wavelength‐dependent photochemical properties demands multimodular, photosynthetic‐reaction‐center model compounds. Here, we successfully demonstrate donor– acceptor excitation‐wavelength‐dependent, ultrafast charge separation and charge recombination in newly synthesized, novel tetrads featuring bisferrocene, BF2‐chelated azadipyrromethene, and fullerene entities. The tetrads synthesized using multistep synthetic procedure revealed characteristic optical, redox, and photo reactivities of the individual components and featured “closely” and “distantly” positioned donor–acceptor systems. The near‐IR‐emitting BF2‐chelated azadipyrromethene acted as a photosensitizing electron acceptor along with fullerene, while the ferrocene entities acted as electron donors. Both tetrads revealed excitation‐wavelength‐dependent, photoinduced, electron‐transfer events as probed by femtosecond transient absorption spectroscopy. That is, formation of the Fc+–ADP–C60.? charge‐separated state upon C60 excitation, and Fc+–ADP.?–C60 formation upon ADP excitation is demonstrated.  相似文献   

5.
Novel thermoresponsive double‐hydrophilic fluorinated block copolymers were successfully synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Poly[N‐(2,2‐difluoroethyl)acrylamide] (P2F) was synthesized via RAFT polymerization of N‐(2,2‐difluoroethyl)acrylamide (M2F) using 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methylpropionic acid (DMP) as the chain transfer agent (CTA) and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The resulting P2F macroCTA was further chain extended with N‐(2‐fluoroethyl)acrylamide (M1F) to yield poly{[N‐(2,2‐difluoroethyl)acrylamide]‐b‐[N‐(2‐fluoroethyl)acrylamide]} (P2F‐b‐P1F) block copolymers with different lengths of the P1F block. Molecular weight and molecular weight distribution were determined by gel permeation chromatography. The average molecular weight (Mn) of the resulting polymers ranged from 2.9 × 104 to 5.8 × 104 depending on the length of the P1F block. The molecular weight distribution was low (Mw/Mn = 1.11–1.19). Turbidimetry by UV‐Visble (UV‐Vis) spectroscopy, dynamic light scattering, and in situ temperature‐dependent 1H NMR measurements demonstrated that the P2F block underwent a thermal transition from hydrophilic to hydrophobic, which in turn induced self‐assembly from unimers to aggregates. Transmission electron microscopy studies demonstrated that polymeric aggregates formed from an aqueous solution of P2F‐b‐P1F at 60 °C were disrupted by cooling down to 20 °C and regenerated by heating to 60 °C. Temperature‐triggered release of a model hydrophobic drug, coumarin 102, was also demonstrated. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Benzyl N‐[8‐(4,4‐dimethyl‐5‐oxo‐4,5‐dihydrooxazol‐2‐yl)‐2,5,5,8‐tetra­methyl‐3,6‐dioxo‐4,7‐diazanon‐2‐yl]­carbamate, C24H34N4O6, an oxazol‐5(4H)‐one from N‐α‐benzyloxycarbonyl‐(Aib)4‐OH (Aib = α‐amino­isobutyryl) represents the longest peptide oxazolone so far characterized by X‐ray diffraction. The overall geometry of the oxazolone ring compares well with literature data. The Aib(1) and Aib(2) residues are folded into a type III β‐bend, while the conformation adopted by Aib(3), preceding the oxazolone moiety, is semi‐extended. The disposition of the oxazolone ring relative to the preceding residue is stabilized by C—­H?N and C—H?O intramolecular interactions.  相似文献   

7.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

8.
Formation of a tetrahedron with >4 nm perylene bisimide (PBI) dye edges and ZnII vertices in a one‐pot 22 component self‐assembly reaction is reported. The luminescent polyhedron equilibrates to a Zn2L3 helicate and disassembles upon dilution. Insights into the subcomponent self‐assembly of extended PBI ligands help to refine design rules for constructing large photofunctional metallosupramolecular hosts.  相似文献   

9.
In existing poly(3‐alkylthiophenes) atomistic models, an extended conformation of the side chain is usually assumed. We report a first principle study of the side‐chain energetics of 3‐hexylthiophene, with the constraint of compatibility with crystal packing requirements. The first two torsion angles of the side chain closest to the ring were considered. Electron correlation is shown to be of great relevance in the assessment of the relative stability of folded conformers against extended ones. The roles of local charge‐transfer, rehybridization, steric repulsion, and basis set superposition error, were all considered in the rationalization of our results. We extend our analysis to the thiophene/methane complex in order to elucidate the main differences between intermolecular and intramolecular CH/π phenomena. While in the noncovalent complex a single C—H bond mediates the interaction, folded arrangements of 3‐alkylthiophenes require the collective effort of several aliphatic bonds. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
A novel three‐dimensional ZnII complex, poly[aqua(μ4‐5‐carboxylato‐1‐carboxylatomethyl‐2‐oxidopyridinium)zinc(II)], [Zn(C8H5NO4)(H2O)]n, has been prepared by hydrothermal assembly of Zn(CH3COO)2·2H2O and 5‐carboxy‐1‐(carboxymethyl)pyridin‐1‐ium‐2‐olate (H2ccop). The ccop2− anions bridge the ZnII cations in a head‐to‐tail fashion via monodentate aromatic carboxylate and phenolate O atoms to form an extended zigzag chain which runs parallel to the [011] direction. One O atom of the aliphatic carboxylate group of the ccop2− ligand coordinates to the ZnII atom of a neighbouring chain thereby producing undulating layers which lie parallel to the (01) plane. A similar parallel undulating planar structure can be obtained if a path involving the other O atom of the aliphatic carboxylate group is considered. Thus, the aliphatic carboxylate group acts in a bridging bidentate mode to give extended –Zn–O–C–O–Zn– sequences running parallel to [001] which link the layers into an overall three‐dimensional framework. The three‐dimensional framework can be simplified as a 4‐connected sra topology with a Schläfli symbol of 42.63.8 if all the ZnII centres and ccop2− anions are regarded as tetrahedral 4‐connected nodes. The three‐dimensional luminescence spectrum was measured at room temperature with excitation and emission wavelengths of 344–354 and 360–630 nm, respectively, at intervals of 0.15 and 2 nm, respectively.  相似文献   

11.
Photoremovable protecting groups (PPGs) when conjugated to biological effectors forming “caged compounds” are a powerful means to regulate the action of physiologically active messengers in vivo through 1‐photon excitation (1PE) and 2‐photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product outcomes in different solvent and pH conditions for the photolysis reactions of (8‐chloro‐7‐hydroxyquinolin‐2‐yl)methyl acetate (CHQ‐OAc) and (8‐bromo‐7‐hydroxyquinolin‐2‐yl)methyl acetate (BHQ‐OAc), representatives of the quinoline class of phototriggers for biological use, and conducted nanosecond time‐resolved spectroscopic studies using transient emission (ns‐EM), transient absorption (ns‐TA), transient resonance Raman (ns‐TR2), and time‐resolved resonance Raman (ns‐TR3) spectroscopies. The results indicate differences in the photochemical mechanisms and product outcomes, and reveal that the triplet excited state is most likely on the pathway to the product and that dehalogenation competes with release of acetate from BHQ‐OAc, but not CHQ‐OAc. A high fluorescence quantum yield and a more efficient excited‐state proton transfer (ESPT) in CHQ‐OAc compared to BHQ‐OAc explain the lower quantum efficiency of CHQ‐OAc relative to BHQ‐OAc.  相似文献   

12.
In the present work, a unique series of random polybenzimidazole (PBI) copolymers consisting of the recently reported novel isomeric AB‐PBI (i‐AB‐PBI) and the well known AB‐PBI were synthesized. The i‐AB‐PBI incorporates additional linkages (2,2 and 5,5) in the benzimidazole sequence when compared with AB‐PBI. Random copolymers, varying in composition at 10 mol % increments, were synthesized to evaluate the effects of sequence isomerism in the polymer main chain without altering the fundamental chemical composition or functionality of a polymer chain consisting of 2,5‐benzimidazole units. Polymer solutions were prepared in polyphosphoric acid (PPA) and cast into membranes using the sol–gel PPA process. The resulting polymers were found to have high inherent viscosities (>2.0 dL/g) and showed elevated membrane proton conductivities (~0.2 S/cm) under anhydrous conditions at 180 °C. Fuel cell performance evaluations were conducted, and an average output voltage ranging from 0.5 to 0.60 V at 0.2 A/cm2 was observed for hydrogen/air at an operational temperature of 180 °C without applied backpressure or humidification. Herein, we report for the first time glass transition (Tg) temperatures for AB‐PBI, i‐AB‐PBI, and an anomalous Tg effect for the series of randomized PBIs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 619–628  相似文献   

13.
The unexpected introduction of a cationic imidazolium substituent in the 2‐position of a tetrachloro‐substituted perylene‐3,4:9,10‐tetracarboxylic acid bisimide (PBI) by the reaction of PBI‐Cl4 1 with the N‐heterocyclic carbene 1,3‐di‐iso‐propyl‐imidazolin‐2‐ylidene (iPr2Im 2 ) enables the isolation of an ambient stable zwitterionic radical. The remarkable stability of this unprecedented PBI‐centered radical facilitates the complete characterization by several spectroscopic methods as well as single crystal structure analysis. Redox studies revealed that iPr2Im‐PBI‐Cl4 4 can be transferred reversibly to the corresponding anion and cation, respectively, even on a preparative scale.  相似文献   

14.
Aminonaphthalimide–BODIPY energy transfer cassettes were found to show very fast (kEET≈1010–1011 s?1) and efficient BODIPY fluorescence sensitization. This was observed upon one‐ and two‐photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two‐photon absorption cross‐section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ≈10 GM for the BODIPY versus 19–26 GM in the dyad at λexc=840 nm; 1 GM (Goeppert–Mayer unit)=10?50 cm4 s molecule?1 photon?1]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfer cassette concept, was demonstrated by time‐dependent density functional theory calculations. The applicability of the new probes in the one‐ and two‐photon excitation mode was demonstrated in a proof‐of‐principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY‐containing dyad.  相似文献   

15.
The single‐crystal‐to‐single‐crystal (SCSC) E?Z photoisomerization of TA in the supramolecular solid CECR‐[Zn(TA)2(bpy)]·H2O (CECR = C‐ethylcalixresorcinarene, HTA = tiglic acid, and bpy = 2,2′‐bipyridine, is induced by 458 nm light, indicating a red‐shift of the photo‐active wavelength on introduction of the aromatic bpy ligand compared with the previously studied reaction of CECR‐[Zn(TA)2(H2O)2] 4H2O. Theoretical calculations show that the initial excitation involves the bipyridyl ligand, which acts as an intramolecular photosensitizer for the isomerization process. The reaction is topotactic and illustrated by photodifference maps.  相似文献   

16.
The synthesis, self‐assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and π–π stacking between the PBI units directs the formation of the self‐assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self‐assembly were studied by solvent‐ and temperature‐dependent UV‐visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H‐type π stacks and red gels, whereas by introducing branched alkyl chains the formation of J‐type π stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2‐ethylhexyl group completely suppressed the π stacking. Coaggregation studies with H‐ and J‐aggregating chromophores revealed the formation of solely H‐type π stacks containing both precursor molecules at a lower mole fraction of J‐aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H‐aggregate and J‐aggregate were formed simultaneously, which points to a self‐sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)‐ or (S)‐limonene was effective in preferential population of one‐handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.  相似文献   

17.
Structures of Ionic Di(arenesulfonyl)amides. 8. Sodium Bis[di(4‐fluorobenzenesulfonyl)amido‐N]argentate: A Heterobimetallic Complex Exhibiting a Lamellar Layer Structure and Short C–H···F–C Interlayer Contacts Na[Ag{N(SO2–C6H4–4‐F)2}2] (monoclinic, C2/c, Z′ = 1/2) is the first heterobimetallic representative in a well‐documented class of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and coordinating N(SO2)2 groups and the outer regions are formed by the aromatic rings of the di(arenesulfonyl)amide entities, which adopt a folded conformation approximating to mirror symmetry. The inversion‐symmetric bis(amido)argentate unit of the novel compound displays an exactly linear N–Ag–N core and short Ag–N bonds of 217.55(17) pm (at ?140 °C); the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The polar lamella is constructed from rows of Na+ ions located on twofold axes, alternating with bis(amido)argentate strands reinforced by Ag···O interactions and weak C–H···O hydrogen bonds; Na+ is embedded in an O6 environment. Adjacent layers are cross‐linked via short C–H···F–C contacts suggestive of weak hydrogen bonding enhanced by cooperativity.  相似文献   

18.
We have prepared and characterized a series of osmium complexes [Os2(CO)4(fpbpy)2] ( 1 ), [Os(CO)(fpbpy)2] ( 2 ), and [Os(fpbpy)2] ( 3 ) with tridentate 6‐pyrazol‐3‐yl 2,2′‐bipyridine chelating ligands. Upon the transformation of complex 2 into 3 through the elimination of the CO ligand, an extremely large change in the phosphorescence wavelength from 655 to 935 nm was observed. The results are rationalized qualitatively by the strong π‐accepting character of CO, which lowers the energy of the osmium dπ orbital, in combination with the lower degree of π conjugation in 2 owing to the absence of one possible pyridine‐binding site. As a result, the energy gap for both intraligand π–π* charge transfer (ILCT) and metal‐to‐ligand charge transfer (MLCT) is significantly greater in 2 . Firm support for this explanation was also provided by the time‐dependent DFT approach, the results of which led to the conclusion that the S0→T1 transition mainly involves MLCT between the osmium center and bipyridine in combination with pyrazolate‐to‐bipyridine 3π–π* ILCT. The relatively weak near‐infrared emission can be rationalized tentatively by the energy‐gap law, according to which the radiationless deactivation may be governed by certain low‐frequency motions with a high density of states. The information provided should allow the successful design of other emissive tridentate metal complexes, the physical properties of which could be significantly different from those of complexes with only a bidentate chromophore.  相似文献   

19.
20.
A novel blend system was prepared by blending organosoluble nitro‐substituted polybenzimidazole (NO2‐PBI) and polyetherimide (PEI) in a cosolvent at a moderate condition. It was shown that the NO2‐PBI/PEI blends not only possess tractable processability owing to the enhanced solubility of NO2‐PBI but also retain the desirable features of unmodified PBI/PEI blends. Apparent miscibility in the blends was observed and attributed to hydrogen‐bonding interactions between N? H groups in NO2‐PBI and carbonyl groups in PEI. It was revealed that the NO2‐PBI/PEI blends phase‐separate upon heating above the glass‐transition temperatures. The observed mixing of NO2‐PBI and PEI in a molecular level, although sustainable only in the glassy region, was shown to lend synergy effects to the physical properties of the blends. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1778–1783, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号