首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Supramolecular complexes between cyclodextrin and iron species are studied by using secondary ion mass spectrometry. The iron species are prepared by pulsed‐laser ablation of bulk iron in water; this gives Fe+ (56 m/z) and FexOy+ (x, y=1–7) species. Cyclodextrin is added to the water either before or after the laser ablation. When it is added before laser ablation, molecular fragments of cyclodextrin are detected as dehydrated glucopyranose units (C6H8O4+) associated with Fe+, FeO+, and Fe2O+ species. The focus is to observe supramolecular host–guest complexes or adducts between intact molecules of cyclodextrin and iron species. When cyclodextrin is added after laser ablation, the relevant peak at 1210 m/z is observed and assigned as C42H67O35FeNa+, which corresponds to a cyclodextrin molecule minus three H atoms. Two possible explanations of this finding are the presence of the host–guest C42H67O35Na–Fe complex, in which Fe is in the cavity, or the presence of the adduct C42H67O34Na–FeO with FeO on the outer surface; the formation of these complexes are supported by the hydrophobicity of Fe and hydrophilicity of FeO, respectively. Due to the presence of 12 % of intact C42H70O35Na–Fe complex and an estimated Fe/FeO ratio of approximately 102, host–guest formation is assumed to be more significant.  相似文献   

2.
3.
4.
5.
脉冲激光法连续制备纳米铁溶胶及其分散稳定性的研究   总被引:13,自引:0,他引:13  
章仪  陈文哲  章文贡 《化学学报》2003,61(1):141-145
提出脉冲激光轰击浸于流动液相中铁靶的新方法,连续制备得到纳米铁乙醇溶 胶并采用TEM,FT-IR,UV-vis对其进行表征。透射电镜发现其粒径分布在10- 30nm,傅立叶红外光谱发现乙醇分子基团振动波长受纳米铁颗粒的影响,可见-紫 外光谱的分析结果表明其在237.82nm,272.93nm,308.43nm处附近有吸收。通过UV -vis及TEM研究了添加十二烷醇聚乙烯醚(OP-10)对纳米铁溶胶的分散稳定性的 影响。结果表明,加入0.10的十二烷醇聚氧乙烯醚对纳米铁颗粒的分散起到很好的 稳定作用。  相似文献   

6.
Supramolecular surface nanostructures have application potential as functional devices. The complex combination of thiolated cyclodextrin, chemisorbed on an Au surface (Au‐S‐CD), with deposited Fe species is studied by secondary ion mass spectrometry. The Fe species are prepared by pulsed laser ablation in water and thermal effusion in vacuum. Using laser ablation in water, the solution of Fe species is dropped on Au‐S‐CD, where mass peaks at 1227 m/z, 1243 m/z, and 1260 m/z are observed and assigned to C42H68O34SNa‐Fe+, C42H68O34SK‐Fe+ together with C42H68O34SNa‐FeO+, and C42H68O34SK‐FeO+, respectively. On the other hand, laser ablation directly linked to the Au‐S‐CD surface results in desorption of CD‐S. Thermal effusion, even with a cooled surface, was negative with respect to the complex observation. Laser ablation results in the formation of a supramolecular host–guest complex of the form Au‐S‐CD‐Fe, and in the formation of an adduct of the form Au‐S‐CD‐FeO.  相似文献   

7.
8.
9.
10.
11.
12.
Methods for the rapid construction of new chemical motifs have the potential to accelerate the development of nanoscience. The synthesis of new chemical entities by laser ablation has been systematically demonstrated by using mixtures of gold and selenium. The compounds generated are detected by time‐of‐flight mass spectrometry and, for selected compounds, the structure is investigated by using density functional theory optimization. In total, 67 new gold selenide clusters have been synthesized, demonstrating an unsuspected richness in gold chemistry. Chemical species generated in the gas phase might inspire new routes for the synthesis of novel compounds in the solid state.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号