首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Chemphyschem》2003,4(4):321-321
The cover picture shows an intriguing effect in molecular systems, which is caused by the parity‐violating weak interactions: The chemical shifts of magnetic nuclei are predicted to differ for the two enantiomers of a chiral compound! While in the R enantiomer the nucleus (red) of the yellow center gives rise to the red NMR signal, the corresponding nucleus of the S enantiomer (green) is expected to absorb at a slightly different frequency. The ab initio approach presented by Laubender and Berger on pp. 395–399 allows for a prediction of the resulting parity‐violating line splitting (shown in the black curve) and for the identification of molecular candidates that are well‐suited to the first successful measurement of parity‐violating effects in molecules.  相似文献   

3.
4.
5.
6.
7.
8.
9.
《Chemphyschem》2003,4(6):541-548
The first observation of a parity‐violation effect in molecules induced by weak interactions is still a dream that requires the synthesis and, eventually, the resolution of the enantiomers of well‐chosen simple chiral molecules together with an appropriate experimental set‐up for high‐resolution spectroscopy. Performing IR spectroscopy on highly enantiomerically enriched samples of bromochlorofluoromethane succeeded in giving an upper limit of 10?13 for the relative vibrational energy difference between the two enantiomers. These results led us to conceive a new experimental set‐up based on a supersonic molecular beam and to work on other chiral molecules, such as chlorofluoroiodomethane. A synthesis of (±)‐CHClFI from racemic chlorofluoroiodoacetic acid should, in the near future permit the preparation of optically active samples of this haloform. The development of molecular beam spectroscopy using a two‐photon Ramsey‐fringes experiment should allow us to reach the precision needed to observe parity violation. These experimental challenges, which stimulate a close collaboration between chemists and physicists, are presented. The success of these projects would open the route to new information on the molecular Hamiltonian, a better knowledge of the electroweak interaction, and a better control of the various chirality‐related properties of simple molecules.  相似文献   

10.
11.
Enantiomerically pure triflones R1CH(R2)SO2CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3SSCF3. The deprotonation of RCH(Me)SO2CF3 (R=CH2Ph, iHex) with nBuLi with the formation of salts [RC(Me)? SO2CF3]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2CF3 group of (S)‐MeOCH2C(Me)(CH2Ph)SO2CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2C(Me)(CH2Ph)Et of 96 % ee. Racemization of salts [R1C(R2)SO2CF3]Li follows first‐order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα? S bond rotation as the rate‐determining step. Lithium α‐(S)‐trifluoromethyl‐ and α‐(S)‐nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α‐(S)‐tert‐butylsulfonyl carbanion salts. Whereas [PhCH2C(Me)SO2tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half‐life of racemization at ?105 °C of 2.4 h, that of [PhCH2C(Me)SO2CF3]Li at ?78 °C is 30 d. DNMR spectroscopy of amides (PhCH2)2NSO2CF3 and (PhCH2)N(Ph)SO2CF3 gave N? S rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2C(Ph)SO2R]M (M=Li, K, NBu4; R=CF3, tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2C(Ph)SO2CF3]Li? L }2 ( L =2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2C(Ph)SO2CF3]NBu4 have the typical chiral Cα? S conformation of α‐sulfonyl carbanions, planar Cα atoms, and short Cα? S bonds. Ab initio calculations of [MeC(Ph)SO2tBu]? and [MeC(Ph)SO2CF3]? showed for the fluorinated carbanion stronger nC→σ* and nO→σ* interactions and a weaker benzylic stabilization. According to natural bond orbital (NBO) calculations of [R1C(R2)SO2R]? (R=tBu, CF3) the nC→σ*S? R interaction is much stronger for R=CF3. Ab initio calculations gave for [MeC(Ph)SO2tBu]Li ? 2 Me2O an O,Li,Cα contact ion pair (CIP) and for [MeC(Ph)SO2CF3]Li ? 2 Me2O an O,Li,O CIP. According to cryoscopy, [PhCH2C(Ph)SO2CF3]Li, [iHexC(Me)SO2CF3]Li, and [PhCH2C(Ph)SO2CF3]NBu4 predominantly form monomers in tetrahydrofuran (THF) at ?108 °C. The NMR spectroscopic data of salts [R1(R2)SO2R3]Li (R3=tBu, CF3) indicate that the dominating monomeric CIPs are devoid of Cα? Li bonds.  相似文献   

12.
Chirality is vital in chemistry. Its importance in atomic clusters has been recognized since the discovery of the first chiral fullerene, the D2 symmetric C76. 1 A number of gold clusters have been found to be chiral, 2 raising the possibility to use them as asymmetric catalysts. The discovery of clusters with enantiomeric structures is essential to design new chiral materials with tailored chemical and physical properties. 3 Herein we report the first inherently chiral boron cluster of [B30]? in a joint photoelectron spectroscopy and theoretical study. The most stable structure of [B30]? is found to be quasiplanar with a hexagonal hole. Interestingly, a pair of enantiomers arising from different positions of the hexagonal hole are found to be degenerate in our global minimum searches and both should co‐exist experimentally because they have identical electronic structures and give rise to identical simulated photoelectron spectra.  相似文献   

13.
14.
Protonated and deprotonated adipic acids (PAA: HOOC? (CH2)4? COOH2+ and DAA: HOOC? (CH2)4? COO?) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H2O???H???OH2)+ Zundel‐like symmetric hydrogen bonding, whereas that of DAA has H3O+ Eigen‐like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel‐like ions for PAA and Eigen‐like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH???O short hydrogen‐bond stretching peaks are predicted in the range of 1000–1700 cm?1 in the Car–Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen‐bond peaks. The O? H? O stretching peaks in the range of 1800–2700 cm?1 become insignificant above around 150 K and are almost washed out at about 300 K.  相似文献   

15.
A dinuclear CoII complex ( 1 ) featuring unprecedented anodic and cathodic switches for single‐molecule magnet (SMM) activity has been recently investigated (J. Am. Chem. Soc. 2013 , 135, 14670). The presence of sandwiched radicals in different oxidation states of this compound mediates magnetic coupling between the high‐spin (S=3/2) cobalt ions, which gives rise to SMM activity in both the oxidized ([ 1 (OEt2)]+) and reduced ([ 1 ]?) states. This feature represents the first example of a SMM exhibiting fully reversible, dual ON/OFF switchability. Here we apply ab initio and broken‐symmetry DFT calculations to elucidate the mechanisms responsible for magnetic properties and magnetization blocking in these compounds. It is found that due to the strong delocalization of the magnetic molecular orbital, there is a strong antiferromagnetic interaction between the radical and cobalt ions. The lack of high axiality of the cobalt centres explains why these compounds possess slow relaxation of magnetization only in an applied dc magnetic field.  相似文献   

16.
17.
18.
[{Mn(TPA)I}{UO2(Mesaldien)}{Mn(TPA)I}]I formula (here TPA=tris(2-pyridylmethyl)amine and Mesaldien=N,N’-(2-aminomethyl)diethylenebis(salicylidene imine)) reported by Mazzanti and coworkers (Chatelain et al. Angew. Chem. Int. Ed. 2014 , 53, 13434) is so far the best Single Molecule Magnet (SMM) in the {3d–5f} class of molecules exhibiting barrier height of magnetization reversal as high as 81.0 K. In this work, we have employed a combination of ab initio CAS and DFT methods to fully characterize this compound and to extract the relevant spin Hamiltonian parameters. We show that the signs of the magnetic coupling and of the g-factors of the monomers are interconnected. The central magnetic unit [UVO2]+ is described by a Kramers Doublet (KD) with negative g-factors, due to a large orbital contribution. The magnetic coupling for the {Mn(II)-U(V)} pair is modeled by an anisotropic exchange Hamiltonian: all components are ferromagnetic in terms of spin moments, the parallel component JZ twice larger as the perpendicular one J. The spin density distribution suggests that spin polarization on the U(V) center favors the ferromagnetic coupling. Further, the JZ/J ratio, which is related to the barrier height, was found to correlate to the corresponding spin contribution of the g-factors of the U(V) center. This correlation established for the first time offers a direct way to estimate this important ratio from the corresponding gS-values, which can be obtained using traditional ab initio packages and hence has a wider application to other {3d–5f} magnets. It is finally shown that the magnetization barrier height is tuned by the splitting of the [UVO2]+ 5 f orbitals.  相似文献   

19.
20.
The spin states of a Co(II) oxoverdazyl compound are investigated by means of wavefunction-based calculations. Within a ca. 233 K energy window, the ground state and excited states display a structure-sensitive admixture of low-spin SM=1/2 in a dominant high-spin SM=3/2 Co(II) ion as indicated by the localized molecular orbitals. The puzzling spin zoology that results from the coupling between open-shell radical ligands and a spin-crossover metal ion gives rise to this unusual scenario, which extends the views in molecular magnetism. In agreement with experimental observation, the low-energy spectroscopy is very sensitive to deformations of the coordination sphere, and a growing admixture of Co(II) low-spin is evidenced from the calculations. In analogy with mesomerism that accounts for charge delocalization, entanglement combines different local spin states to generate a given total spin multiplicity, a spinmerism phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号