首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Drug sensitization with various inorganic nanoparticles (NPs) has proved to be a promising and an emergent concept in the field of nanomedicine. Rose bengal (RB), a notable photosensitizer, triggers the formation of reactive oxygen species under green‐light irradiation, and consequently, it induces cytotoxicity and cell death. In the present study, the effect of photoinduced dynamics of RB upon complexation with semiconductor zinc oxide NPs is explored. To accomplish this, we successfully synthesized nanohybrids of RB with ZnO NPs with a particle size of 24 nm and optically characterized them. The uniform size and integrity of the particles were confirmed by high‐resolution transmission electron microscopy. UV/Vis absorption and steady‐state fluorescence studies reveal the formation of the nanohybrids. ultrafast picosecond‐resolved fluorescence studies of RB–ZnO nanohybrids demonstrate an efficient electron transfer from the photoexcited drug to the semiconductor NPs. Picosecond‐resolved Förster resonance energy transfer from ZnO NPs to RB unravel the proximity of the drug to the semiconductor at the molecular level. The photoinduced ROS formation was monitored using a dichlorofluorescin oxidation assay, which is a conventional oxidative stress indicator. It is observed that the ROS generation under green light illumination is greater at low concentrations of RB–ZnO nanohybrids compared with free RB. Substantial photodynamic activity of the nanohybrids in bacterial and fungal cell lines validated the in vitro toxicity results. Furthermore, the cytotoxic effect of the nanohybrids in HeLa cells, which was monitored by MTT assay, is also noteworthy.  相似文献   

2.
A systematic experimental and theoretical study of the origin of the enhanced photocatalytic performance of Mg‐doped ZnO nanoparticles (NPs) and Mg‐doped ZnO/reduced graphene oxide (rGO) nanocomposites has been performed. In addition to Mg, Cd was chosen as a doping material for the bandgap engineering of ZnO NPs, and its effects were compared with that of Mg in the photocatalytic performance of ZnO nanostructures. The experimental results revealed that Mg, as a doping material, recognizably ameliorates the photocatalytic performance of ZnO NPs and ZnO/graphene nanocomposites. Transmission electron microscopy (TEM) images showed that the Mg‐doped and Cd‐doped ZnO NPs had the same size. The optical properties of the samples indicated that Cd narrowed the bandgap, whereas Mg widened the bandgap of the ZnO NPs and the oxygen vacancy concentration was similar for both samples. Based on the experimental results, the narrowing of the bandgap, the particle size, and the oxygen vacancy did not enhance the photocatalytic performance. However, Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH) models showed that Mg caused increased textural properties of the samples, whereas rGO played an opposite role. A theoretical study, conducted by using DFT methods, showed that the improvement in the photocatalytic performance of Mg‐doped ZnO NPs was due to a higher electron transfer from the Mg‐doped ZnO NPs to the dye molecules compared with pristine ZnO and Cd‐doped ZnO NPs. Moreover, according to the experimental results, along with Mg, graphene also played an important role in the photocatalytic performance of ZnO.  相似文献   

3.
Density Functional Theory employing hybrid and M06 functionals in combination with three different basis sets is used to calculate the ground state of a cage like (ZnO)12 nanocluster which has been consistently reported as the more stable cluster for its particular size. B3LYP and B3PW91 hybrid functionals combined with 6‐31+G*, Lanl2dz and SDD basis sets are employed to treat the ZnO molecular system. Alternatively, three M06 functionals in combination with three basis sets are employed in the nanostructure calculations. Results obtained by treating ZnO sodalite cage nanocluster with M06 functionals demonstrated comparable quality to results obtained with hybrid functionals. Within this study, efficient theoretical DFT methods with the widely known hybrid and the recently created M06 meta‐hybrid functionals are employed to study nanostructured ZnO. Our resulting parameters provide a fresh approach performance wise on the different theoretical methods to treat transition metal nanostructures, particularly, ZnO nanoclusters geometry and electronic structure.  相似文献   

4.
Recent advances in photocatalysis focus on the development of materials with hierarchical structure and on the surface plasmon resonance (SPR) phenomenon exhibited by metal nanoparticles (NPs). In this work, both are combined in a material where size‐controllable Ag‐NPs are uniformly loaded onto the hierarchical microporous and mesoporous and nanocolumnar structures of ZnO, resulting in Ag‐NP/ZnO nanocomposites. The embedded Ag‐NPs slightly decrease the hydrophobicity of fibrous ZnO, improve its wettability, and increase the absorption of formaldehyde (H2CO) onto the photocatalyst, all of this resulting in excellent photodegradation of formaldehyde in aqueous solution. Besides, we found that Ag‐NPs with optimal size not only accelerate the charge transfer to the surface of ZnO, but also strengthen the SPR effect in the intercolumnar channels of fibrous ZnO particles combining with high concentration of photo‐generated radical species. The micro‐to‐mesoporous ZnO is like a nanoarray packed Ag‐NPs. With Ag‐NPs of diameter 2.5 < ? < 6.5 nm, ZnO exhibits the most superior photodegradation rate constant value of 0.0239 min?1 with total formaldehyde removal of 97%. This work presents a new feasible approach involving highly sophisticated Ag‐NP/ZnO architecture combining the SPR effect and hierarchically ordered structures, which results in high photocatalytic activity for formaldehyde photodegradation.  相似文献   

5.
《中国化学》2017,35(10):1627-1632
A bio‐inspired graphene/Au@ZnO photoelectrode has been prepared via breath figure method, in which Au@ZnO nanospheres were uniformly distributed in the whole honeycomb film. The size of the honeycomb holes effects the light using efficiency. The honeycomb film with smaller holes in more ordered array shows better antireflective property. All the formed graphene/Au@ZnO honeycomb photoelectrodes show a fast, stable, and reversible response of photocurrent accompanied by each switch‐on and switch‐off event. Au@ZnO ‐modified graphene honeycomb film can combine the advantages of increased light harvesting provided by honeycomb structure, efficient charge separation from Au nanoparticles (NPs ), and efficient electron transfer provided by graphene. Au@ZnO ‐ modified graphene honeycomb film shows a two‐fold increase of photocurrent generation than ZnO ‐modified graphene honeycomb film and a three‐fold increase of photocurrent generation than Au@ZnO ‐modified graphene smooth film, respectively. The rational design and engineering of multi components with different functions in a hybrid bio‐inspired structure hold great promise for further efficient solar energy conversion devices.  相似文献   

6.
甲苯是一种最常见的室内有毒挥发性有机物(VOCs),目前消除方法主要有吸附、催化燃烧和光催化氧化,其中光催化是一种最高效和经济可行的方法,能在较温和条件下将甲苯完全矿化为 CO2.作为研究最广泛的光催化剂, TiO2在应用中通常有锐钛矿(ATiO2)和金红石(RTiO2)两种物相,但单物相 TiO2的低量子产率和光生电子-空穴对的快速复合严重限制了它的应用.本文选择兼具锐钛矿和金红石两种物相的 P25为催化剂载体,通过负载少量 ZnO和构建多组分并具备多通道载流子分离功能的异质结以提高 TiO2基光催化剂的性能.
  利用一步浸渍法制备了一系列 ZnO/P25复合光催化剂,考察了其光催化降解气相甲苯性能. X射线粉末衍射结果表明, ZnO/P25异质光催化剂是由 ATiO2, RTiO2和红锌矿三种物相结构组成.高分辨透射电镜结果表明, ZnO/P25具备三相异质结 ZnO(002)/ATiO2(101)/RTiO2(110).紫外可见光谱、荧光光谱和光电流表征结果表明, ZnO/P25所形成的三相异质结不但增强了光吸收能力,还实现了多通道电子/空穴分离.催化降解实验表明, ZnO/P25异质光催化剂能在室温紫外光辐射下将甲苯完全矿化为 CO2和 H2O.基于三相异质结和多通道光生电子-空穴对分离的形成及促进作用, ZnO/P25光催化活性和速率均明显高于 P25.本文报道的多通道载流子分离理念可为高效光催化剂设计和应用提供一种新思路.  相似文献   

7.
A heterostructured semiconductor–metal ZnO?Ag nanoparticle (NP) composite was constructed through a straightforward photocatalytic strategy by using UV irradiation of ZnO NPs and an aqueous solution of Ag precursor. The ZnO?Ag NP composites serve as an effective cathode‐modifying layer in polymer solar cells (PSCs) with increased short‐circuit current density owing to the light‐trapping effect, and improved optical and electrical conductivity properties compared with pure ZnO NPs. The Ag NPs, which are photodeposited in situ on ZnO NPs, can act as effective antennas for incident light to maximize light harvesting and minimize radiative decay or nonradiative losses, consequently resulting in the enhanced photogeneration of excitons in PSCs. Systematic photoelectron and ‐physical investigations confirm that heterostructured ZnO?Ag NPs can significantly improve charge separation, transport, and collection, as well as lower charge recombination at the cathode interface, leading to a 14.0 % improvement in air‐processed device power conversion efficiency. In addition, this processable, cost‐effective, and scalable approach is compatible with roll‐to‐roll manufacturing of large‐scale PSCs.  相似文献   

8.
《中国化学会会志》2017,64(7):813-821
Zinc oxide nanoparticles (ZnO NPs ) were prepared by a simple, convenient, and cost‐effective wet chemical method using the biopolymer starch. The prepared ZnO NPs were characterized by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray (EDX ), Fourier transform infrared (FT‐IR ), and UV ‐visible spectroscopic techniques. The average crystallite size calculated from XRD data using the Debye–Scherer equation was found to be 15 nm. The electrochemical behavior of caffeine (CAF ) was studied using a glassy carbon electrode (GCE ) modified with zinc oxide nanoparticles by cyclic voltammetry (CV ) and differential pulse voltammetry (DPV ). Compared to unmodified GCE , ZnO NPs‐ modified GCE (ZnO NPs MGCE ) exhibited excellent electrocatalytic activity towards CAF oxidation, which was evident from the increase in the peak current and decrease in the peak potential. Electrochemical impedance study suggested that the charge‐transfer capacity of GCE was significantly enhanced by ZnO NPs . The linear response of the peak current on the concentrations of CAF was in the range 2–100 μM . The detection limit was found to be 0.038 μM. The proposed sensor was successfully employed for the determination of CAF in commercial beverage samples.  相似文献   

9.
Well-aligned zinc oxide (ZnO) nanorods (NRs) arrays deposited with Ag nanoparticles (NPs) are prepared by a liquid phase epitaxial growth process followed by a reduction of Ag on the surface of the ZnO NRs. Transmission electron microscopy images show that most Ag NPs are deposited on the upper part of the ZnO NRs, and the overall optical absorption in the range of visible light can be enhanced due to the surface plasmon resonance of the Ag NPs. ZnO NRs with and without Ag NPs are used to assemble dye sensitized solar cells. Devices fabricated from the Ag NPs/ZnO NRs composite arrays exhibit a higher open voltage, short circuit current and fill factor than that fabricated from the bare ZnO NRs array, thus, the overall efficiency of the as-fabricated cell is increased from less than 0.5?% to 0.8?%. The main reason for the enhancement of the device performance may be ascribed to that the electron transfer back from ZnO to the dye and electrolyte is blocked by the Schottky barrier at the Ag/ZnO interface, resulting in a great increase of the electron density at the ZnO conduction band.  相似文献   

10.
A simple strategy was used to enhance band emission through the transfer of defect emission from ZnO to Au by using the energy match between the defect emission of ZnO and the surface plasmon absorbance of Au NPs through decorating the surface of ZnO nanoflowers with Au nanoparticles (Au NPs). The ZnO nanostructure, which was comprised of six nanorods that were attached on one side in a flower‐like fashion, was synthesized by using a hydrothermal method. The temperature‐dependent morphology and detailed growth mechanism were studied. The influence of the density of the Au NPs that were deposited onto the surface of ZnO on photoluminescence was investigated to optimize the configuration of the ZnO/Au system in terms of the maximum band emission. The sequential transfer of defect energy from ZnO to Au and electron transfer from excited Au to ZnO was proposed as a possible mechanism for the enhanced band emission.  相似文献   

11.
随着科学技术的不断进步和经济的快速发展,人类对自然资源的需求量越来越大,在开发利用自然资源的同时,大量的有机污染物也随之进入自然环境.这些物质不仅污染环境、破坏生态,更对人类的生活和健康带来了巨大的威胁.研究证实,半导体光催化剂在光照条件下可以破坏有机污染物的分子结构,最终将其氧化降解成CO2、H2O或其它不会对环境产生二次污染的小分子,从而净化水质.近年来,有关光催化降解有机污染物的报道日益增多. ZnO作为一种广泛研究的光催化降解材料,因其无毒、低成本和高效等特点而具有一定的应用前景.但是ZnO较大的禁带宽度(3.24 eV)导致其只能吸收紫外光部分,而对可见光的吸收效率很小,极大地制约了其实际应用.除此之外, ZnO受光激发产生的电子-空穴分离效率较低、光催化过程中的光腐蚀严重也是制约其实际应用的重要因素.为了提高ZnO的光催化活性和稳定性,本文合成了用g-C3N4修饰的氧空位型ZnO(g-C3N4/Vo-ZnO)复合催化剂,在有效调控ZnO半导体能带结构的同时,通过负载一定量的g-C3N4以降低光生电子-空穴对的复合速率和反应过程中ZnO的光腐蚀,增强催化剂的光催化活性和稳定性.本文首先合成前驱体Zn(OH)F,然后焙烧三聚氰胺和Zn(OH)F的混合物得到g-C3N4/Vo-ZnO复合催化剂,并采用电子顺磁共振波谱(EPR)、紫外-可见光谱(UV-vis)、高分辨透射电镜(HRTEM)和傅里叶变换红外光谱(FT-IR)等表征了它们的结构及其性质. EPR结果表明,ZnO焙烧后具有一定浓度的氧空位,导致其禁带宽度由3.24 eV降至3.09 eV,因而提高了ZnO对可见光的吸收效率. UV-vis结果显示, Vo-ZnO复合g-C3N4后对可见光的吸收显著增强. HRTEM和FT-IR结果均表明, g-C3N4纳米片和Vo-ZnO颗粒之间通过共价键形成了强耦合,这对g-C3N4/Vo-ZnO复合催化剂中光生载流子的传送和光生电子-空穴对的有效分离起到重要作用.可见光催化降解甲基橙(MO)和腐殖酸(HA)的实验进一步证明, g-C3N4/Vo-ZnO复合材料具有较好的光催化活性,优于单一的g-C3N4或Vo-ZnO材料.同时还发现, g-C3N4的负载量对光催化活性有显著影响,当氮化碳的负载量为1 wt%时,所制材料具有最高的光催化活性:可见光照射60 min后,MO降解率可达到93%, HA降解率为80%.复合材料光催化活性的增强一方面是因为氧空位的形成减小了ZnO的禁带宽度,使得ZnO对可见光的吸收能力大大增强;另一方面, g-C3N4和Vo-ZnO的能带符合了Z型催化机理所需的有效能带匹配,使得光生电子-空穴对得到了有效的分离,从而提高了光催化活性.降解MO的循环实验表明, g-C3N4/Vo-ZnO催化剂具有很好的稳定性且不容易发生光腐蚀.与此同时,我们对比了用不同方法制备的g-C3N4/ZnO材料的催化性能.结果显示,本文制备的g-C3N4/Vo-ZnO复合材料具有更好的降解效率.总体而言,对于降解有机污染物, g-C3N4/Vo-ZnO可能是一个更为有效可行的催化体系.此外,本文也为设计与制备其他新型光催化剂提供了一条新的思路.  相似文献   

12.
An electrochromic device with the as‐obtained nanoporous NiO /ZnO nanoarray as a working electrode was constructed and assembled. The nanoporous NiO/ZnO nanoarray film with a three‐dimensional structure was prepared on indium tin oxide (ITO) glass substrate through a two‐step route that combined chemical bath deposition method with a hydrothermal method. The nanoporous NiO/ZnO nanoarray electrode reveals a noticeable improvement in electrochromism compared with that of nanoporous NiO alone, including higher optical modulation (81 %), higher coloration efficiency (78.5 cm2 C?1), faster response times (2.6 and 9.7 s for coloring and bleaching, respectively), and favorable durability performance. Such enhancements are mainly attributed to the three‐dimensional structures of nanoporous NiO coated on ZnO nanoarray, namely, 1) the uniform hexagonal ZnO nanoarray loads more nanoporous NiO, 2) nanoporous NiO cross‐linked with ZnO nanorods provides a loose interspace morphology, 3) stronger adhesion between ZnO nanorods and ITO covered with ZnO seed, 4) core–shell and cross‐linked structures promote electrolyte infiltration, and 5) appropriate band gaps improve charge transfer.  相似文献   

13.
Materials with large and quick non‐linear optical response, excellent photo thermal stability, cost effectiveness and off resonant non‐linear absorption (NLA) are essential requirements for a good optical limiting (OL). Among them, organic systems and π‐conjugated polymers are getting special interest because of their flexibility in structural modification that leads to the tuning of optical and electronic properties that are suitable for working under large bandwidth. Here, we report a drastic enhancement of non‐linear optical activity and exceptional OL action of two organic–inorganic hybrid system based on BODIPY and Au and Ag nanoparticles (NPs). The organic system taken was certain set of BODIPYs with different substitution at the para and meta positions. All the compounds were found to be exhibiting good reverse saturable absorption (RSA) behaviour and negative non‐linear refraction property. An attempt was made to improve the non‐linear optical (NLO) property of the BODIPY by forming nanohybrids with Au and Ag NPs, and the best NLO active candidate among the studied system was chosen for it. A significant enhancement in NLO property was observed on hybrid system formation. The optical limiting (OL) threshold of the hybrid (1 J/cm2) was reduced almost 1/5 times than that of the parent compound (5.2 J/cm2), and this value is comparable with the benchmark OL materials like C60. The mechanism behind the NLA is found to be the combination of excited state absorption (ESA) and two‐photon absorption (TPA). The enhanced NLA and OL action of C? Ag/Au nanohybrids are attributed to the synergetic effect among the two parent components as well as the local field effects of NPs. Enhancement in non‐linear optical property is found to be stronger in hybrid system with Au NPs and is due to the resonant charge transfer and intense local field effect on exciting with 532‐nm pulse compared with that of Ag NPs. Both the parent compounds and the nanohybrids exhibit negative non‐linearity, and the non‐linear refraction is also found to be enhanced. The improved NLA and OL property of hybrid system guarantees successful usage of the strategy in OL applications.  相似文献   

14.
Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs-RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.  相似文献   

15.
We report the simple one‐pot synthesis of size tunable zinc oxide nanoparticles (ZnO NPs) out of an organometallic ZnO precursor using the self‐assembly of solution phase polystyrene‐block‐poly(2‐vinylpyridine) micelles. The resulting hybrid material could be deposited on various substrates in a straightforward manner with the NPs showing size‐dependent absorption and photoluminescence due to the quantum‐size effect. We compare the results to the assembly of preformed NPs which are selectively incorporated in the poly(2‐vinylpyridine) core of the micelles due to the high affinity of ZnO to vinylpyridine.

  相似文献   


16.
The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p–n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p‐type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n‐type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron‐transfer channel, thus resulting in efficient separation of photoinduced electron–hole pairs. Such a p–n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications.  相似文献   

17.
A remarkable enhancement of Raman scattering is achieved by submicrometer‐sized spherical ZnO superstructures. The secondary superstructures of ZnO particles with a uniform diameter in the range of 220–490 nm was formed by aggregating ca. 13 nm primary single crystallites. By engineering the superstructure size to induce Mie resonances, leading to an electromagnetic contribution to the SERS enhancement. Meanwhile, a highly efficient charge‐transfer (CT) contribution derived from the primary structure of the ZnO nanocrystallites was able to enhance the SERS signals as well. The highest Raman enhancement factor of 105 was achieved for a non‐resonant molecule by the synergistic effect of CT and Mie resonances. The Mie resonances scattered near‐field effect investigated in the present study provides not only an important guide for designing novel SERS‐active semiconductor substrates, but also a coherent framework for modelling the electromagnetic mechanism of SERS on semiconductors.  相似文献   

18.
Well-aligned ZnO nanorods (NRs) were grown on indium-tin-oxide (ITO) slide by the hydrothermal method and used as templates for preparing ZnO/Au composite nanoarrays. The optical and morphological properties of ZnO/Au composites under various HAuCl(4) concentrations were explored via UV-vis absorption spectroscopy, photoluminescence (PL) and scanning electron microscopy (SEM). The density and size of gold nanoparticles (Au NPs) on ZnO NRs can be controlled by adjusting the concentration of HAuCl(4). The optimal ZnO/Au composites display complete photocatalytic degradation of methyl blue (MB) within 60 min, which is superior to that with pure ZnO NRs prepared by the same method. The reason of better photocatalytic performance is that Au NPs act as electron traps and it prevents the rapid recombination of electrons and holes, resulting in the improvement of photocatalytic efficiency. The photocatalytic performance of ZnO/Au composites is mainly controlled by the density of Au NPs formed on ZnO NRs. The application in rapid photodegradation of MB shows the potential of ZnO/Au composite as a convenient catalyst for the environmental purification of organic pollutants.  相似文献   

19.
Improving the performance of photoactive solid-state devices begins with systematic studies of the metal-semiconductor nanocomposites (NCs) upon which such devices are based. Here, we report the photo-dependent excitonic mechanism and the charge migration kinetics in a colloidal ZnO-Au NC system. By using a picosecond-resolved F?rster resonance energy transfer (FRET) technique, we have demonstrated that excited ZnO nanoparticles (NPs) resonantly transfer visible optical radiation to the Au NPs, and the quenching of defect-mediated visible emission depends solely on the excitation level of the semiconductor. The role of the gold layer in promoting photolytic charge transfer, the activity of which is dependent upon the degree of excitation, was probed using methylene blue (MB) reduction at the semiconductor interface. Incident photon-to-current efficiency measurements show improved charge injection from a sensitizing dye to a semiconductor electrode in the presence of gold in the visible region. Furthermore, the short-circuit current density and the energy conversion efficiency of the ZnO-Au NP based dye-sensitized solar cell (DSSC) are much higher than those of a DSSC comprised of only ZnO NP. Our results represent a new paradigm for understanding the mechanism of defect-state passivation and photolytic activity of the metal component in metal-semiconductor nanocomposite systems.  相似文献   

20.
Although catalytic processes mediated by surface plasmon resonance (SPR) excitation have emerged as a new frontier in catalysis, the selectivity of these processes remains poorly understood. Here, the selectivity of the SPR‐mediated oxidation of p‐aminothiophenol (PATP) employing Au NPs as catalysts was controlled by the choice of catalysts (Au or TiO2‐Au NPs) and by the modulation of the charge transfer from UV‐excited TiO2 to Au. When Au NPs were employed as catalyst, the SPR‐mediated oxidation of PATP yielded p,p‐dimercaptobenzene (DMAB). When TiO2‐Au NPs were employed as catalysts under both UV illumination and SPR excitation, p‐nitrophenol (PNTP) was formed from PATP in a single step. Interestingly, PNTP molecules were further reduced to DMAB after the UV illumination was removed. Our data show that control over charge‐transfer processes may play an important role to tune activity, product formation, and selectivity in SPR‐mediated catalytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号