首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colloidal barium‐doped TiO2 nanocrystals have been developed that enable the highly reversible light‐responsive color switching of redox dyes with excellent cycling performance and high switching rates. Oxygen vacancies resulting from the Ba doping serve as effective sacrificial electron donors (SEDs) to scavenge the holes photogenerated in TiO2 nanocrystals under UV irradiation and subsequently promote the reduction of methylene blue to its colorless leuco form. Effective color switching can therefore be realized without relying on external SEDs, thus greatly increasing the number of switching cycles. Ba doping can also accelerate the recoloration under visible‐light irradiation by shifting the absorption edge of TiO2 nanocrystals to a shorter wavelength. Such a system can be further casted into a solid film to produce a rewritable paper on which letters and patters can be repeatedly printed using UV light and then erased by heating; this process can be repeated for many cycles and does not require additional inks.  相似文献   

2.
Lead‐halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common‐place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light‐emitting devices, with the peak luminance of 4428 cd m?2 and external quantum yield of 1.7 %.  相似文献   

3.
Shape Control of Colloidal Semiconductor Nanocrystals   总被引:2,自引:0,他引:2  
Shape control of inorganic nanocrystals is important for understanding basic size- and shape-dependent scaling laws, and may be useful in a wide range of applications. Methods for controlling the shapes of inorganic nanocrystals are evolving rapidly. This paper will focus on how we currently control the shape of semiconductor nanocrystals using CdSe as example.  相似文献   

4.
This study presents the experimental and theoretical study of highly internally Al‐doped TiO2 nanoparticles. Two synthesis methods were used and detailed characterization was performed. There were differences in the doping and the crystallinity, but the nanoparticles synthesized with the different methods share common features. Anatase to rutile transformation occurred at higher temperatures with Al doping. X‐ray photoelectron spectroscopy showed the generation of oxygen vacancies, which is an interesting feature in photocatalysis. In turn, the band‐gap energy and the valence band did not change appreciably. Periodic density functional calculations were performed to model the experimentally doped structures, the formation of the oxygen vacancies, and the band gap. Calculation of the density of states confirmed the experimental band‐gap energies. The theoretical results confirmed the presence of Ti4+ and Al3+. The charge density study and electron localization function analysis indicated that the inclusion of Al in the anatase structure resulted in a strengthening of the Ti?O bonds around the vacancy.  相似文献   

5.
A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high‐quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type‐II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis.  相似文献   

6.
表面对纳米微粒中稀土离子光谱性质的影响   总被引:1,自引:0,他引:1  
对于稀土和过渡金属这样的离子中心,由于电子轨道的半径小,纳米尺度的限域对能级位置和跃迁速率的影响并不显著,表面效应成为这类材料与相应体材料光谱性质出现差异的主要因素。把使稀土离子光谱性质产生可测量变化的环境用一个以其为中心、半径为D的作用球表示,可以定义纳米材料厚度为D的表面层。用完整晶格的晶体场和一个补偿电荷的场近似描述表面层中稀土离子的晶体场。本文用这个模型分析了纳米微粒中稀土离子光谱的非均匀宽化,激光选择激发下发射光谱随激发波长的变化,非选择激发下发射光谱随温度的变化以及跃迁分支比的变化等实验现象。  相似文献   

7.
This work confirms the presence of a large facet‐dependent photocatalytic activity of Cu2O crystals through sparse deposition of gold particles on Cu2O cubes, octahedra, and rhombic dodecahedra. Au‐decorated Cu2O rhombic dodecahedra and octahedra showed greatly enhanced photodegradation rates of methyl orange resulting from a better separation of the photogenerated electrons and holes, with the rhombic dodecahedra giving the best efficiency. Au–Cu2O core–shell rhombic dodecahedra also displayed a better photocatalytic activity than pristine rhombic dodecahedra. However, Au‐deposited Cu2O cubes, pristine cubes, and Au‐deposited small nanocubes bound by entirely {100} facets are all photocatalytically inactive. X‐ray photoelectron spectra (XPS) showed identical copper peak positions for these Au‐decorated crystals. Remarkably, electron paramagnetic resonance (EPR) measurements indicated a higher production of hydroxyl radicals for the photoirradiated Cu2O rhombic dodecahedra than for the octahedra, but no radicals were produced from photoirradiated Cu2O cubes. The Cu2O {100} face may present a high energy barrier through its large band edge bending and/or electrostatic repulsion, preventing charge carriers from reaching to this surface. The conventional photocatalysis model fails in this case. The facet‐dependent photocatalytic differences should be observable in other semiconductor systems whenever a photoinduced charge‐transfer process occurs across an interface.  相似文献   

8.
高度分散的Pt/TiO2的制备及光催化活性   总被引:7,自引:2,他引:7  
张青红  高濂 《化学学报》2005,63(1):65-70,F008
用柠檬酸作为空穴捕获剂和分散剂,在温和条件下用光催化还原法将3nm金属铂沉积在7nm的锐钛矿相及介孔二氧化钛纳米晶表面,TEM观察显示铂的负载量为w=1.0%时,多数二氧化钛纳米晶表面沉积了岛状的铂团簇,XPS和电子衍射结果表明铂以游离态存在.负载w=1.0%~2.0%铂的TiO2在苯酚光氧化反应中活性显著提高,Pt/TiO2在氨气中经550℃氮化,可制得氮掺杂的Pt/TiO2可见光光催化剂,氮化过程中铂团簇没有烧结和显著长大。  相似文献   

9.
Exploration of low‐cost and earth‐abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition‐metal dichalcogenides (TMDs) showed outstanding performance as co‐catalysts for the hydrogen evolution reaction (HER), designing TMD‐hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one‐pot wet‐chemical method is developed to prepare MS2–CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single‐layer MS2 nanosheets with lateral size of 4–10 nm selectively grow on the Cd‐rich (0001) surface of wurtzite CdS nanocrystals. These MS2–CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2–CdS and MoS2–CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2–CdS nanohybrids showed enhanced stability after a long‐time test (16 h), and 70 % of catalytic activity still remained.  相似文献   

10.
11.
金属有机骨架材料(Metal-Organic Frameworks,MOFs)由于具有超高的比表面积和孔隙率、孔径大小和结构可调等优点,在能源、催化和生物医药等领域引起了人们广泛的重视。近年来,微纳米MOFs的可控制备成为了一个新的研究热点。本文总结了微纳米MOFs的合成方法、形貌调控以及应用方面的研究成果,并对其未来研究进行了展望。  相似文献   

12.
We present novel titanium-porphyrinic gels (TPGs) and titanium-porphyrinic aerogels (TPAs), in which porphyrinic ligand tetrakis(4-carboxyphenyl)porphyrin is coordinated to Ti-oxo clusters. These hierarchically porous TPAs, with micro-, meso-, and macropores and reactant-concentration-dependent Brunauer-Emmett-Teller surface areas of 407–738 m2 g−1, are prepared by CO2 critical point drying of TPGs. Although the Ti4+ → Ti3+ photoreduction of TPAs is less efficient than that of crystalline microporous Ti-porphyrinic framework DGIST-1, prompt diffusion of O2 and spin-trapping agents into the TPA pores causes the rapid generation of reactive oxygen species (ROS), as observed by EPR spectroscopy. When used as an ROS scavenger, large 1,3-diphenylisobenzofuran is degraded by the best-performing TPA 10 times faster than by DGIST-1, suggesting that the accessibility of molecules (reactants) to pores (reactive centers) strongly influences photocatalytic activity.  相似文献   

13.
Organic nanocrystals of 1,3,5-triphenyl-2-pyrazoline(TPP) with a series of sizes were synthesized by reprecipitation method.The luminescence quantum efficiency of TPP nanocrystals increases from 24.2% for the nanocrystals with an average size of 300nm to 34.6% for those with an average size of 20nm.Surface capping by polyvinyl pyrrolidone(PVP) will improve the quantum efficiency of TPP nanocrystals.The size-dependence and capping-induced variation of the luminescence quantum efficiency was elucidated in viewpoint of aggregation quenching and the equilibrium between the TPP monomers and the aggregates in TPP nanocrystals.  相似文献   

14.
The photocatalytic properties of titanium dioxide (TiO2) layers on different metal plates are investigated. The metal–semiconductor interface can be described as a Schottky contact, and is part of a depletion layer for the majority carriers in the semiconductor. Many researchers have demonstrated an increase in the photocatalytic activity, due to the formation of a metal–semiconductor contact that are obtained by deposition of small metal islands on the semiconductor. Nevertheless, the influence of a Schottky contact remains uncertain, sparking much interest in this field. The immobilization of nanoparticulate TiO2 layers by dip‐coating on different metal substrates results in the formation of a Schottky contact. The recombination rate of photoinduced electron–hole pairs decreases at this interface provided that the thickness of the thin TiO2 layer has a similar magnitude to the depletion layer. The degradation of dichloroacetic acid in aqueous solution and of acetaldehyde in a gas mixture is investigated to obtain information concerning the influence of the metal work function of the back contact on the efficiency of the photocatalytic process.  相似文献   

15.
 采用透射电子显微镜、扫描电子显微镜、X 射线荧光分析、X 射线光电子能谱、紫外-可见漫反射光谱和吡啶吸附傅里叶变换红外光谱等表征方法以及偶氮染料甲基橙的吸附和光降解反应, 研究了 ZSM-5 晶粒度对 TiO2/ZSM-5 光催化剂性能的影响. 结果表明, TiO2 主要负载于 ZSM-5 沸石外表面, 因而减小载体晶粒度有利于提高 TiO2 的负载量和分散性. 纳米 ZSM-5 沸石负载的 TiO2 催化剂具有较高的甲基橙吸附量, 且吸附发生在 ZSM-5 外表面的酸中心上, 催化剂良好的吸附能力促进了甲基橙的光降解.  相似文献   

16.
In this work, environmentally friendly photocatalysts with attractive catalytic properties are reported that have been prepared by introducing SnO2 quantum dots (QDs) directly onto ZnSe(N2H4)0.5 substrates to induce advantageous charge separation. The SnO2/ZnSe(N2H4)0.5 nanocomposites could be easily synthesized through a one-pot hydrothermal process. Owing to the absence of capping ligands, the attached SnO2 QDs displayed superior photocatalytic properties, generating many exposed reactive surfaces. Moreover, the addition of a specified amount of SnO2 boosted the visible-light photocatalytic activity; however, the presence of excess SnO2 QDs in the substrate resulted in aggregation and deteriorated the performance. The spectroscopic data revealed that the SnO2 QDs act as a photocatalytic mediator and enhance the charge separation within the type II band alignment system of the SnO2/ZnSe(N2H4)0.5 heterojunction photocatalysts. The separated charges in the heterojunction nanocomposites promote radical generation and react with pollutants, resulting in enhanced photocatalytic performance.  相似文献   

17.
TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation.  相似文献   

18.
采用溶剂热法合成了具有不同晶粒尺寸的聚乙烯吡咯烷酮(PVP)修饰的CdS纳米晶,并运用XRD,N2物理吸附,TEM,IR,UV-Vis等手段进行表征。结果表明,所制得的样品均为聚乙烯吡咯烷酮(PVP)修饰的CdS纳米晶;添加四甲基氢氧化铵(TMAH)有利于获得晶粒尺寸较小的CdS纳米晶;受纳米晶粒尺寸的影响,CdS纳米晶的吸收边发生蓝移且可见光催化活性明显提高。  相似文献   

19.
保护剂对K2PtCl6为前体合成纳米铂形状的影响   总被引:3,自引:0,他引:3  
纳米粒子的性质不仅受到尺寸的影响,还与其形状密切相关,由于铂在催化及材料等领域中有重要应用,因此化学合成特定形状的纳米铂一直备受关注,具有特定表面结构的纳米粒子对于研究催化活性与表面原子结构的关系具有重要意义,目前立方体形状纳米铂已被合成,但高比例四面体形状纳米铂的合成研究很少有报道,  相似文献   

20.
Electrochemiluminescence (ECL) behaviors and mechanisms of fluorine‐doped tin oxide (F‐SnO2) semiconductor nanocrystals (NCs) were firstly investigated in both of nonaqueous and aqueous solutions via potential scanning or pulsing. Furthermore, the ECL of F‐SnO2 was applied successfully to detect dopamine based on the quenching effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号