首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF‐HUST‐A1 with a benzylamine‐functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF‐HUST‐A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g?1 h?1). Photocatalytic overall water splitting is achieved by depositing dual co‐catalysts in CTF‐HUST‐A1, with H2 evolution and O2 evolution rates of 25.4 μmol g?1 h?1 and 12.9 μmol g?1 h?1 in pure water without using sacrificial agent.  相似文献   

2.
Graphene analogues of TaS2 and TiS2 (3–4 layers), prepared by Li intercalation followed by exfoliation in water, were characterized. Nanocomposites of CdS with few‐layer TiS2 and TaS2 were employed for the visible‐light‐induced H2 evolution reaction (HER). Benzyl alcohol was used as the sacrificial electron donor, which was oxidized to benzaldehyde during the reaction. Few‐layer TiS2 is a semiconductor with a band gap of 0.7 eV, and its nanocomposite with CdS showed an activity of 1000 μmol h?1 g?1. The nanocomposite of few‐layer TaS2, in contrast, gave rise to higher activity of 2320 μmol h?1 g?1, which was attributed to the metallic nature of few‐layer TaS2. The amount of hydrogen evolved after 20 and 16 h for the CdS/TiS2 and CdS/TaS2 nanocomposites was 14833 and 28132 μmol, respectively, with turnover frequencies of 0.24 and 0.57 h?1, respectively.  相似文献   

3.
A photocatalytic system containing a perylene bisimide (PBI) dye as a photosensitizer anchored to titanium dioxide (TiO2) nanoparticles through carboxyl groups was constructed. Under solar‐light irradiation in the presence of sacrificial triethanolamine (TEOA) in neutral and basic conditions (pH 8.5), a reaction cascade is initiated in which the PBI molecule first absorbs green light, giving the formation of a stable radical anion (PBI.?), which in a second step absorbs near‐infrared light, forming a stable PBI dianion (PBI2?). Finally, the dianion absorbs red light and injects an electron into the TiO2 nanoparticle that is coated with platinum co‐catalyst for hydrogen evolution. The hydrogen evolution rates (HERs) are as high as 1216 and 1022 μmol h?1 g?1 with simulated sunlight irradiation in neutral and basic conditions, respectively.  相似文献   

4.
Modular optimization of metal–organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO2 with high efficiency under visible‐light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron–hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long‐lived electrons for the reduction of CO2 molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO2, which is equivalent to a 3.13‐fold improvement in CO evolution rate (200.6 μmol g?1 h?1) and a 5.93‐fold enhancement in CH4 generation rate (36.67 μmol g?1 h?1) compared to the parent MOF.  相似文献   

5.
Semiconductive property of elementary substance is an interesting and attractive phenomenon. We obtain a breakthrough that fibrous phase red phosphorus, a recent discovered modification of red phosphorus by Ruck et al., can work as a semiconductor photocatalyst for visible‐light‐driven hydrogen (H2) evolution. Small sized fibrous phosphorus is obtained by 1) loading it on photoinactive SiO2 fibers or by 2) smashing it ultrasonically. They display the steady hydrogen evolution rates of 633 μmol h?1 g?1 and 684 μmol h?1 g?1, respectively. These values are much higher than previous amorphous P (0.6 μmol h?1 g?1) and Hittorf P (1.6 μmol h?1 g?1). Moreover, they are the highest records in the family of elemental photocatalysts to date. This discovery is helpful for further understanding the semiconductive property of elementary substance. It is also favorable for the development of elemental photocatalysts.  相似文献   

6.
Photocatalytic generation of hydrogen by using oleic acid‐capped CdS, CdSe, and CdS0.75Se0.25 alloy nanocrystals (quantum dots) has been investigated under visible‐light irradiation by employing Na2S and Na2SO3 as hole scavengers. Highly photostable CdS0.75Se0.25 alloy nanocrystals gave the highest hydrogen evolution rate (1466 μmol h?1 g?1), which was about three times higher than that of CdS and seven times higher than that of CdSe.  相似文献   

7.
Herein, Pt‐decorated TiO2 nanocube hierarchy structure (Pt‐TNCB) was fabricated by a facile solvothermal synthesis and in‐situ photodeposition strategy. The Pt‐TNCB exhibits an excellent solar‐driven photocatalytic hydrogen evolution rate (337.84 μmol h?1), which is about 37 times higher than that of TNCB (9.19 μmol h?1). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 μmol h?1). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar‐driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron‐hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt‐TNCB photocatalyst with SPR effect may provide a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.  相似文献   

8.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

9.
Red phosphorus is a promising photocatalyst with wide visible‐light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]‐oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.2 and 17.5 μmol h?1 from pure water under simulated solar light and visible light irradiation, respectively. It was theoretically and experimentally indicated that the strong electronic coupling between PCN and [001]‐oriented HP nanorods gave rise to the enhanced visible light absorption and the greatly accelerated photoinduced electron–hole separation and transfer, which benefited the photocatalytic HER performance.  相似文献   

10.
Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, nitrogen-doped TiO2 with high hydrogen production by photocatalytic water splitting were prepared by microwave-assisted hydrothermal method using titanium sulfate as precursor in the presence of urea. The nitrogen doped TiO2 prepared in this study was pure anatase phase with a high surface area (372?m2?g?1) and showed a very high hydrogen evolution rate of water splitting reaction under UV light irradiation (4,386?μmol?g?1?h?1) and visible light irradiation (185?μmol?g?1?h?1) which was about 15?times higher than commercial TiO2 (Degussa P25).  相似文献   

11.
Limited by the relatively sluggish charge‐carrier separation in semiconductors, the photocatalytic performance is still far below what is expected. Herein, a model of ZnIn2S4 (ZIS) nanosheets with oxygen doping is put forward to obtain in‐depth understanding of the role that doping atoms play in photocatalysis. It shows enhanced photocatalytic activity compared with pristine ZIS. The electron dynamics analyzed by ultrafast transient absorption spectroscopy reveals that the average recovery lifetime of photoexcited electrons is increased by 1.53 times upon oxygen incorporation into the ZIS crystals, indicating enhanced separation of photoexcited carriers in oxygen‐doped ZIS nanosheets. As expected, the oxygen‐doped ZIS nanosheets show a remarkably improved photocatalytic activity with a hydrogen evolution rate of up to 2120 μmol h?1 g?1 under visible‐light irradiation, which is 4.5 times higher than that of the pristine ZIS nanosheets.  相似文献   

12.
A visible light driven, direct Z‐scheme reduced graphene oxide–Ag3PO4 (RGO–Ag3PO4) heterostructure was synthesized by means of a simple one‐pot photoreduction route by varying the amount of RGO under visible light illumination. The reduction of graphene oxide (GO) and growth of Ag3PO4 took place simultaneously. The effect of the amount of RGO on the textural properties and photocatalytic activity of the heterostructure was investigated under visible light illumination. Furthermore, total organic carbon (TOC) analysis confirmed 97.1 % mineralization of organic dyes over RGO–Ag3PO4 in just five minutes under visible‐light illumination. The use of different quenchers in the photomineralization suggested the presence of hydroxyl radicals ( . OH), superoxide radicals ( . O2?), and holes (h+), which play a significant role in the mineralization of organic dyes. In addition to that, clean hydrogen fuel generation was also observed with excellent reusability. The 4 RGO–Ag3PO4 heterostructure has a high H2 evolution rate of 3690 μmol h?1 g?1, which is 6.15 times higher than that of RGO.  相似文献   

13.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1?xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g?1 h?1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

14.
A metal–insulator–semiconductor (MIS) photosystem based on covalent organic framework (COF) semiconductors was designed for robust and efficient hydrogen evolution under visible‐light irradiation. A maximal H2 evolution rate of 8.42 mmol h?1 g?1 and a turnover frequency of 789.5 h?1 were achieved by using a MIS photosystem prepared by electrostatic self‐assembly of polyvinylpyrrolidone (PVP) insulator‐capped Pt nanoparticles (NPs) with the hydrophilic imine‐linked TP‐COFs having =C=O?H?N= hydrogen‐bonding groups. The hot π‐electrons in the photoexcited n‐type TP‐COF semiconductors can be efficiently extracted and tunneled to Pt NPs across an ultrathin PVP insulating layer to reduce protons to H2. Compared to the Schottky‐type counterparts, the COF‐based MIS photosystems give a 32‐fold‐enhanced carrier efficiency, attributed to the combined enhancement of photoexcitation rate, charge separation, and oxidation rate of holes accumulated in the valence band of the TP‐COF semiconductor.  相似文献   

15.
A surfactant‐stabilized coordination strategy is used to make two‐dimensional (2D) single‐atom catalysts (SACs) with an ultrahigh Pt loading of 12.0 wt %, by assembly of pre‐formed single Pt atom coordinated porphyrin precursors into free‐standing metal–organic framework (MOF) nanosheets with an ultrathin thickness of 2.4±0.9 nm. This is the first example of 2D MOF‐based SACs. Remarkably, the 2D SACs exhibit a record‐high photocatalytic H2 evolution rate of 11 320 μmol g?1 h?1 via water splitting under visible light irradiation (λ>420 nm) compared with those of reported MOF‐based photocatalysts. Moreover, the MOF nanosheets can be readily drop‐casted onto solid substrates, forming thin films while still retaining their photocatalytic activity, which is highly desirable for practical solar H2 production.  相似文献   

16.
The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low‐cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g‐C3N4) from a low‐cost precursor, urea, is reported. The g‐C3N4 exhibits an extraordinary hydrogen‐evolution rate (ca. 20 000 μmol h?1 g?1 under full arc), which leads to a high turnover number (TON) of over 641 after 6 h. The reaction proceeds for more than 30 h without activity loss and results in an internal quantum yield of 26.5 % under visible light, which is nearly an order of magnitude higher than that observed for any other existing g‐C3N4 photocatalysts. Furthermore, it was found by experimental analysis and DFT calculations that as the degree of polymerization increases and the proton concentration decreases, the hydrogen‐evolution rate is significantly enhanced.  相似文献   

17.
Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h−1 g−1 under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g−1.  相似文献   

18.
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion.  相似文献   

19.
ZnIn2S4 microspheres (ZIS MSs) were for the first time decorated with carbon quantum dots (CQDs) and platinum nanoparticles (NPs) as dual co‐catalysts of for photocatalytic H2 production. The ZIS MSs co‐loaded with CQDs and Pt exhibited a high photocatalytic H2 production rate of 1032.2 μmol h?1 g?1 with an apparent quantum efficiency of 2.2 % (420 nm) in triethanolamine aqueous solution under visible‐light irradiation, which was much higher than the respective photocatalytic rates of pure ZIS, Pt loaded ZIS, and CQDs‐decorated ZIS. Such a great enhancement was attributed to the integrative effect of good crystallization, enhanced light absorption, high electrical conductivity of CQDs, and the vectorial electron transfer from ZIS to CQDs and Pt NPs (ZIS→CQDs→Pt).  相似文献   

20.
Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2?/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2? and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h?1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号