首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polyhedron defined by all the split cuts obtainable directly (i.e. without iterated cut generation) from the LP-relaxation P of a mixed integer program (MIP) is termed the (elementary, or rank 1) split closure of P. This paper deals with the problem of optimizing over the elementary split closure. This is accomplished by repeatedly solving the following separation problem: given a fractional point, say x, find a rank-1 split cut violated by x or show that none exists. Following Caprara and Letchford [17], we formulate this separation problem as a nonlinear mixed integer program that can be treated as a parametric mixed integer linear program (PMILP) with a single parameter in the objective function and the right hand side. We develop an algorithmic framework to deal with the resulting PMILP by creating and maintaining a dynamically updated grid of parameter values, and use the corresponding mixed integer programs to generate rank 1 split cuts. Our approach was implemented in the COIN-OR framework using CPLEX 9.0 as a general purpose MIP solver. We report our computational results on well-known benchmark instances from MIPLIB 3.0 and several classes of structured integer and mixed integer problems. Our computational results show that rank-1 split cuts close more than 98% of the duality gap on 15 out of 41 mixed integer instances from MIPLIB 3.0. More than 75% of the duality gap can be closed on an additional 10 instances. The average gap closed over all 41 instances is 72.78%. In the pure integer case, rank-1 split cuts close more than 75% of the duality gap on 13 out of 24 instances from MIPLIB 3.0. On average, rank 1 split cuts close about 72% of the duality gap on these 24 instances. We also report results on several classes of structured problems: capacitated versions of warehouse location, single-source facility location, p-median, fixed charge network flow, multi-commodity network design with splittable and unsplittable flows, and lot sizing. The fraction of the integrality gap closed varies for these problem classes between 100 and 67%. We also gathered statistics on the average coefficient size (absolute value) of the disjunctions generated. They turn out to be surprisingly small. Research was supported by the National Science Foundation through grant #DMI-0352885 and by the Office of Naval Research through contract N00014-03-1-0133.  相似文献   

2.
Transmitters and receivers are the basic elements of wireless networks and are characterized by a number of radio-electrical parameters. The generic planning problem consists of establishing suitable values for these parameters so as to optimize some network performance indicator. The version here addressed, namely the Power Assignment Problem (pap), is the problem of assigning transmission powers to the transmitters of a wireless network so as to maximize the satisfied demand. This problem has relevant practical applications both in radio-broadcasting and in mobile telephony. Typical solution approaches make use of mixed integer linear programs with huge coefficients in the constraint matrix yielding numerical inaccuracy and poor bounds, and so cannot be exploited to solve large instances of practical interest. In order to overcome these inconveniences, we developed a two-phase heuristic to solve large instances of pap, namely a constructive heuristic followed by an improving local search. Both phases are based on successive shortest path computations on suitable directed graphs. Computational tests on a number of instances arising in the design of the national Italian Digital Video Broadcasting (DVB) network are presented.  相似文献   

3.
A tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.  相似文献   

4.
An efficient model formulation for level of repair analysis   总被引:2,自引:0,他引:2  
Given a product design and a repair network, a level of repair analysis (lora) determines for each component in the product (1) whether it should be discarded or repaired upon failure and (2) at which echelon in the repair network to do this. The objective of the lora is to minimize the total (variable and fixed) costs. We propose an ip model that generalizes the existing models, based on cases that we have seen in practice. Analysis of our model reveals that the integrality constraints on a large number of binary variables can be relaxed without yielding a fractional solution. As a result, we are able to solve problem instances of a realistic size in a couple of seconds on average. Furthermore, we suggest some improvements to the lora analysis in the current literature.  相似文献   

5.
This paper explores the potential benefit of using tuned parameter settings for integer programming instances. Three metrics are considered for selecting parameters: Time-to-Optimality, Proven-Gap and Best-Integer-Solution. Good parameter settings for each metric are found using the open-source software tool Selection Tool for Optimization Parameters. Computational tests are presented using CPLEX solver (version 9.0) on MIPLIB test instances, showing substantial improvements over the default parameter setting. Although the benefit of a tuned parameter setting on an individual instance is outweighed by the cost of identifying the tuned setting, these results indicate that substantial benefit may be achieved in cases where the cost of tuning parameter settings is justified.  相似文献   

6.
During the last decades, much research has been conducted on deriving classes of valid inequalities for mixed integer knapsack sets, which we call knapsack cuts. Bixby et?al. (The sharpest cut: the impact of Manfred Padberg and his work. MPS/SIAM Series on Optimization, pp. 309?C326, 2004) empirically observe that, within the context of branch-and-cut algorithms to solve mixed integer programming problems, the most important inequalities are knapsack cuts derived by the mixed integer rounding (MIR) procedure. In this work we analyze this empirical observation by developing an algorithm to separate over the convex hull of a mixed integer knapsack set. The main feature of this algorithm is a specialized subroutine for optimizing over a mixed integer knapsack set which exploits dominance relationships. The exact separation of knapsack cuts allows us to establish natural benchmarks by which to evaluate specific classes of them. Using these benchmarks on MIPLIB 3.0 and MIPLIB 2003 instances we analyze the performance of MIR inequalities. Our computations, which are performed in exact arithmetic, are surprising: In the vast majority of the instances in which knapsack cuts yield bound improvements, MIR cuts alone achieve over 87% of the observed gain.  相似文献   

7.
We investigate the Robust Deviation Balanced Minimum Evolution Problem (RDBMEP), a combinatorial optimization problem that arises in computational biology when the evolutionary distances from taxa are uncertain and varying inside intervals. By exploiting some fundamental properties of the objective function, we present a mixed integer programming model to exactly solve instances of the RDBMEP and discuss the biological impact of uncertainty on the solutions to the problem. Our results give perspective on the mathematics of the RDBMEP and suggest new directions to tackle phylogeny estimation problems affected by uncertainty.  相似文献   

8.
The siting and sizing of electrical substations on a rectangular electrical grid can be formulated as an integer programming problem with a quadratic objective and linear constraints. We propose a novel approach that is based on solving a sequence of local relaxations of the problem for a given number of substations. Two methods are discussed for determining a new location from the solution of the relaxed problem. Each leads to a sequence of strictly improving feasible integer solutions. The number of substations is then modified to seek a further reduction in cost. Lower bounds for the solution are also provided by solving a sequence of mixed-integer linear programs. Results are provided for a variety of uniform and Gaussian load distributions as well as some real examples from an electric utility. The results of gams/dicopt, gams/sbb, gams/baron and cplex applied to these problems are also reported. Our algorithm shows slow growth in computational effort with the number of integer variables.  相似文献   

9.
Silver and Moon (J Opl Res Soc 50(8) (1999) 789–796) address the problem of minimising total average cycle stock subject to two practical constraints. They provide a dynamic programming formulation for obtaining an optimal solution and propose a simple and efficient heuristic algorithm. Hsieh (J Opl Res Soc 52(4) (2001) 463–470) proposes a 0–1 linear programming approach to the problem and a simple heuristic based on the relaxed 0–1 programming formulation. We show in this paper that the formulation of Hsieh can be improved for solving very large size instances of this inventory problem. So the mathematical approach is interesting for several reasons: the definition of the model is simple, its implementation is immediate by using a mathematical programming language together with a mixed integer programming software and the performance of the approach is excellent. Computational experiments carried out on the set of realistic examples considered in the above references are reported. We also show that the general framework for modelling given by mixed integer programming allows the initial model to be extended in several interesting directions.  相似文献   

10.
We consider a class of non-linear mixed integer programs with n integer variables and k continuous variables. Solving instances from this class to optimality is an NP-hard problem. We show that for the cases with k=1 and k=2, every optimal solution is integral. In contrast to this, for every k≥3 there exist instances where every optimal solution takes non-integral values. Received: August 2001 / Accepted: January 2002?Published online March 27, 2002  相似文献   

11.
We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in Billionnet et al. (Math. Program., 2010) a general solution method based on quadratic convex reformulation, that we called MIQCR. This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation less general than MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR). We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON (Sahinidis and Tawarmalani, User??s manual, 2010) to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve.  相似文献   

12.
Motivated by an underground mining operation at Kiruna, Sweden, we formulate a mixed integer program to schedule iron ore production over multiple time periods. Our optimization model determines an operationally feasible ore extraction sequence that minimizes deviations from planned production quantities. The number of binary decision variables in our model is large enough that directly solving the full, detailed problem for a three year time horizon requires hours, or even days. We therefore design a heuristic based on solving a smaller, more tractable, model in which we aggregate time periods, and then solving the original model using information gained from the aggregated model. We compute a bound on the worst case performance of this heuristic and demonstrate empirically that this procedure produces good quality solutions while substantially reducing computation time for problem instances from the Kiruna mine.  相似文献   

13.
The well-known Shortest Path problem (SP) consists in finding a shortest path from a source to a destination such that the total cost is minimized. The SP models practical and theoretical problems. However, several shortest path applications rely on uncertain data. The Robust Shortest Path problem (RSP) is a generalization of SP. In the former, the cost of each arc is defined by an interval of possible values for the arc cost. The objective is to minimize the maximum relative regret of the path from the source to the destination. This problem is known as the minmax relative regret RSP and it is NP-Hard. We propose a mixed integer linear programming formulation for this problem. The CPLEX branch-and-bound algorithm based on this formulation is able to find optimal solutions for all instances with 100 nodes, and has an average gap of 17 % on the instances with up to 1,500 nodes. We also develop heuristics with emphasis on providing efficient and scalable methods for solving large instances for the minmax relative regret RSP, based on Pilot method and random-key genetic algorithms. To the best of our knowledge, this is the first work to propose a linear formulation, an exact algorithm and metaheuristics for the minmax relative regret RSP.  相似文献   

14.
The min-Shift Design problem (MSD) is an important scheduling problem that needs to be solved in many industrial contexts. The issue is to find a minimum number of shifts and the number of employees to be assigned to these shifts in order to minimize the deviation from workforce requirements. Our research considers both theoretical and practical aspects of the min-Shift Design problem. This problem is closely related to the minimum edge-cost flow problem (MECF), a network flow variant that has many applications beyond shift scheduling. We show that MSD reduces to a special case of MECF and, exploiting this reduction, we prove a logarithmic hardness of approximation lower bound for MSD. On the basis of these results, we propose a hybrid heuristic for the problem, which relies on a greedy heuristic followed by a local search algorithm. The greedy part is based on the network flow analogy, and the local search algorithm makes use of multiple neighborhood relations. An experimental analysis on structured random instances shows that the hybrid heuristic clearly outperforms our previous commercial implementation. Furthermore, it highlights the respective merits of the composing heuristics for different performance parameters.  相似文献   

15.
In this paper, we consider the capacitated multi-facility Weber problem with rectilinear distance. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the rectilinear distance separating them. We first give a new mixed integer linear programming formulation of the problem by making use of a well-known necessary condition for the optimal facility locations. We then propose new heuristic solution methods based on this formulation. Computational results on benchmark instances indicate that the new methods can provide very good solutions within a reasonable amount of computation time.  相似文献   

16.
A branch-and-cut mixed integer programming system, called bcopt, is described, incorporating most of the valid inequalities that have been used or suggested for such systems, namely lifted 0-1 knapsack inequalities, 0-1 gub knapsack and integer knapsack inequalities, flowcover and continuous knapsack inequalities, path inequalities for fixed charge network flow structure and Gomory mixed integer cuts. The principal development is a set of interface routines allowing these cut routines to generate cuts for new subsets or aggregations of constraints. The system is built using the XPRESS Optimisation Subroutine Library (XOSL) which includes a cut manager that handles the tree and cut management, so that the user only essentially needs to develop the cut separation routines. Results for the MIPLIB3.0 library are presented - 37 of the instances are solved very easily, optimal or near optimal solution are produced for 18 other instances, and of the 4 remaining instances, 3 have 0, +1, -1 matrices for which bcopt contains no special features. Received May 11, 1997 / Revised version received March 8, 1999?Published online June 11, 1999  相似文献   

17.
In a multiperiod dynamic network flow problem, we model uncertain arc capacities using scenario aggregation. This model is so large that it may be difficult to obtain optimal integer or even continuous solutions. We develop a Lagrangian decomposition method based on the structure recently introduced in G.D. Glockner and G.L. Nemhauser, Operations Research, vol. 48, pp. 233–242, 2000. Our algorithm produces a near-optimal primal integral solution and an optimum solution to the Lagrangian dual. The dual is initialized using marginal values from a primal heuristic. Then, primal and dual solutions are improved in alternation. The algorithm greatly reduces computation time and memory use for real-world instances derived from an air traffic control model.  相似文献   

18.
The goal of this study is to apply the Muscl scheme to the linear advection equation on general unstructured grids and to examine the eigenvalue stability of the resulting linear semi-discrete equation. Although this semi-discrete scheme is in general stable on cartesian grids, numerical calculations of spectra show that this can sometimes fail for generalizations of the Muscl method to unstructured three-dimensional grids. This motivates our investigation of the influence of the slope reconstruction method and stencil on the eigenvalue stability of the Muscl scheme. A theoretical stability analysis of the first order upwind scheme proves that this method is stable on arbitrary grids. In contrast, a general theoretical result is very difficult to obtain for the Muscl scheme. We are able to identify a local property of the slope reconstruction that is strongly related to the appearance of unstable eigenmodes. This property allows to identify the reconstruction methods that are best suited for stable discretizations. The explicit numerical computation of spectra for a large number of two- and three-dimensional test cases confirms and completes the theoretical results.  相似文献   

19.
In this paper we review the integer linear formulations of the uncapacitated multiple allocation hub location problem, we study the scope of validity of these formulations and give new ones that generalize the older formulations. Our formulations allow one or two visits to hubs and include a more general cost structure that needs not satisfy the triangle inequality. We prove that the constraints defined by cliques of a related (intersection) graph are tighter constraints than the classical ones. We also discuss a pre-processing of the problem, which is very useful for reducing its size. Finally, we check the strength of the new formulations and compare them with others in the literature by solving instances of two commonly used data sets: the CAB (Civil Aeronautics Board) and AP (Australian Post), and also randomly generated instances. Our computational results clearly show that our formulations outperform all others previously used for small and medium problems.  相似文献   

20.
In this paper we address a problem consisting of determining the routes and the hubs to be used in order to send, at minimum cost, a set of commodities from sources to destinations in a given capacitated network. The capacities and costs of the arcs and hubs are given, and the arcs connecting the hubs are not assumed to create a complete graph. We present a mixed integer linear programming formulation and describe two branch-and-cut algorithms based on decomposition techniques. We evaluate and compare these algorithms on instances with up to 25 commodities and 10 potential hubs. One of the contributions of this paper is to show that a Double Benders’ Decomposition approach outperforms the standard Benders’ Decomposition, which has been widely used in recent articles on similar problems. For larger instances we propose a heuristic approach based on a linear programming relaxation of the mixed integer model. The heuristic turns out to be very effective and the results of our computational experiments show that near-optimal solutions can be derived rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号