首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates the influence of the spin squeezing parameter γ, the external magnetic field B and the temperature T on the concurrence (C), the quantum discord (QD), and the geometric quantum discord (GQD) in the two-qubit two-axis spin squeezing model in thermal equilibrium under an external magnetic field. The results show that the spin squeezing parameter γ has a positive effect on all three correlations. When the system is in the ground state, the external magnetic field B has a weakening effect on the three types of quantum correlations. Particularly, the spin squeezing parameter can be used to alleviate the destructive effect of the magnetic field on the geometric quantum discord. At a relatively high temperature, the externally applied magnetic field B helps enhance the quantum discord (QD). Further, the quantum discord is more robust than concurrence, and thus is more suitable for use as a quantum resource in information processing.  相似文献   

2.
By taking into account the intrinsic decoherence and the external magnetic field, quantum discord(QD) behaviors in two-qubit spin squeezing model are investigated in detail. It is found that the magnitude of quantum discord is strongly dependent on the initial states, the squeezing interaction μ, the magnetic field Ω and the purity r of initial states. With t, one can obtain the steady quantum discord (SQD) value, the environmental decoherence cannot entirely destroy the quantum correlation. Based on the analysis of the SQD, the conditions about the existence of SQD are obtained with different initial states. Varying the parameters μ, Ω and r not only can weaken the effects of decoherence but also can improve the magnitude of QD and SQD. The effects of the parameters μ and Ω on the QD and SQD display so different and complicated features that one cannot get an uniform law about them, while the values of QD and SQD are improved with increasing r. Properly tuning the parameters μ, Ω and r, one can obtain a larger value of QD or SQD.  相似文献   

3.
In a previous study, we have proposed a procedure to study global quantum discord in 1D chains whose ground states are described by matrix product states [Z.-Y. Sun et al., Ann. Phys. 359, 115 (2015)]. In this paper, we show that with a very simple generalization, the procedure can be used to investigate quantum mixed states described by matrix product density operators, such as quantum chains at finite temperatures and 1D subchains in high-dimensional lattices. As an example, we study the global discord in the ground state of a 2D transverse-field Ising lattice, and pay our attention to the scaling behavior of global discord in 1D sub-chains of the lattice. We find that, for any strength of the magnetic field, global discord always shows a linear scaling behavior as the increase of the length of the sub-chains. In addition, global discord and the so-called “discord density” can be used to indicate the quantum phase transition in the model. Furthermore, based upon our numerical results, we make some reliable predictions about the scaling of global discord defined on the n × n sub-squares in the lattice.  相似文献   

4.
We study one-way quantum deficit of two-qubit X states systematically from analytical derivations. An effective approach to compute one-way quantum deficit of two-qubit X states has been provided. Analytical results are presented as for detailed examples. Moreover, we demonstrate the decoherence of one-way quantum deficit under phase damping channel.  相似文献   

5.
We study the pairwise quantum discord (QD) for a symmetric multi-qubit system in different types of noisy channels, such as phase-flip, amplitude damping, phase-damping, and depolarizing channels. Using the QD and geometric quantum discord (GMQD) to quantify quantum correlations, some analytical and numerical results are presented. The results show that, the QD dynamics is strongly related to the number of spin particles N as well as the initial parameter ?? of the one-axis twisting collective state. With the number of spin particles N increasing, the amount of the QD increases. However, when the amount of the QD arrives at a stable maximal value, the QD is independence of the number of spin particles N increasing. The behavior of the QD is symmetrical during a period 0 ≤ ?? ≤ 2π. Moreover, we compare the QD dynamics with the GMQD for a symmetric multi-qubit system in different types of noisy channels.  相似文献   

6.
A new protocol of bidirectional quantum teleportation (BQT) is proposed in which the users can transmit a class of n-qubit state to each other simultaneously, by using (2n + 2)-qubit entangled states as quantum channel. The state of the art approaches can only transmit two-qubit states in each round. This scheme is based on control-not operation, single-qubit measurements and appropriate single-qubit unitary operations. It is shown that the protocol is secure in preparation phase.  相似文献   

7.
We study the dynamics of quantum correlations involving entanglement and discord of two pairs of two-level atoms in cavity QED. In the model, two atoms A and C are coupled with a single-mode cavity field via Tavis-Cumming interaction at one location, and the same for B and D at another location. The two locations are connected by the entanglement of the atoms AB and CD while there are no any direct interactions between them. Through comparing the robustness of entanglement and discord of the atoms in various initial conditions of cavities, it is shown the discord is more robust than the entanglement and would be useful in quantum information technology.  相似文献   

8.
9.
Recently, Binayak S. Choudhury (Quantum Inf. Process 13, 239 2014), proposed a protocol of joint remote state preparation of an equatorial two-qubit pure quantum state using GHZ states. According to their scheme the probability of success is 0.25. In this letter, an improved scheme is proposed, which can enhance the probability of success to 100 %. Moreover, we propose a scheme to prepare the two-qubit pure quantum state whose coefficient is more general.  相似文献   

10.
By considering a s-wave Bardeen-Cooper-Schrieffer superconductor, as a many body system, subject to a weak constant external potential, U, using perturbed linearized Gorkov equations at zero temperature and calculating perturbed Green’s functions up to the first approximation, we obtain the two-particle space-spin density matrix of the system. Then, we investigate the effect of the potential on bipartite entanglement (via concurrence) of electron spins of a Cooper pair and also quantum discord in terms of the potential and the relative distance of electrons of a Cooper pair, r. At some fixed values of r, concurrence is zero and does not change until U increases and receives to a special value. Specially, quantum entanglement length and quantum correlation length (in which quantum discord becomes zero) with respect to the potential are derived. We result that by increasing the potential, these lengths are increased. At higher values of U, quantum correlation length is not very sensitive to changes in U. Finally, the relation between these lengths is given.  相似文献   

11.
Based on the tensor network representations, we have developed an efficient scheme to calculate the global geometric entanglement as a multipartite entanglement measure for the three-leg spin tubes. From the geometric entanglement, the phase diagram of a spin-3 / 2 isosceles triangle spin tube has been investigated varying the base interaction α. Two Berezinsky-Kosterlitz-Thouless phase transitions are estimated to be αc1 ? 0.68 and αc2 ? 3.85, respectively. Then, even though the spin tube is in gapless spin liquid phases for α<αc1 and α >αc2, the geometrical structure difference between the groundstate wavefunctions for the two regions is found to reflect the global geometric entanglement that contains bipartite and multipartite contributions. Further, the phase transition points from the von Neumann entropies and fidelity are consistent with that from the geometric entanglement. As a result, the global geometric entanglement can be used to explore a geometrical nature of quantum phases as well as an indicator for quantum phase transitions in many-body lattice systems.  相似文献   

12.
By taking into account the quantum erasing effect(QEE), the quantum discord (QD) behavior of a two-qubit system with different initial states are investigated in detail. We find that the quantum correlation can be saved under a scheme of two spatially separated atoms, each located in a leaky cavity through the quantum erasing method. It is shown that QEE can weaken the effects of decoherence, and preserve the maximum information of the coherent item. No matter whether the two atoms are in the mixted or pure state, one can robusty save their initial quantum correlation even the number of erasing events is finite. If one limit the erasing events N, the QEE can be used to protect the initial quantum correlation independently of the state in which it is stored, the values of QD is always nearly equal to the initial QD values, and it is nearly independent of the decoherence, which imply us more encourage strategy for protecting the quantum correlation properties in some quantum systems.  相似文献   

13.
In this study, using the concept of relative entropy as a distance measure of correlations we investigate the important issue of evaluating quantum correlations such as entanglement, dissonance and classical correlations for 2 n -dimensional Bell-diagonal states. We provide an analytical technique, which describes how we find the closest classical states(CCS) and the closest separable states(CSS) for these states. Then analytical results are obtained for quantum discord of 2 n -dimensional Bell-diagonal states. As illustration, some special cases are examined. Finally, we investigate the additivity relation between the different correlations for the separable generalized Bloch sphere states.  相似文献   

14.
We investigate the level surfaces of geometric discord under some typical kinds of decoherence channels for a class of two-qubit states with the Bloch vectors \(\overset {\rightharpoonup }{r}\) and \(\overset {\rightharpoonup }{s}\) in z and x direction respectively. The surfaces of geometric discord are composed of three interaction ”cylinders” along three orthogonal directions of \(\overset {\rightharpoonup }{c}_{1}\) , \(\overset {\rightharpoonup }{c}_{2}\) and \(\overset {\rightharpoonup }{c}_{3}\) . We study the different images corresponding to different values of geometric discord, the Bloch vectors as well as p. In the phase damping channel, the geometric discord keeps constant over a period of time, furthermore the geometric discord and the quantum discord have the same sudden change point for Non-X-structured state.  相似文献   

15.
We compute quantum dissonance Q (non-entangled quantum correlation), entanglement E, quantum discord D (total quantum correlation) and classical correlation C for spin pairs at any distance in the infinite XY spin-1/2 chains, i.e., the anisotropic XY model and the isotropic XY model with three-spin interactions. We obtain two simple dominance relations: CE and DE + Q Except this, there are no other simple ordering relations between them. We also show that Q can detect the special points of the system where the entanglement just appears or completely disappears. In addition, it is worthwhile to mention that dissonance and classical correlation can also clearly spotlight the critical points of quantum phase transitions in XY spin-1/2 chains.  相似文献   

16.
By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity (χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity (χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.  相似文献   

17.
We construct the quantum density matrix of a spin-1/2 state for three given probability distributions describing positions of three classical coins and associate its matrix elements with the Triada of Malevich’s squares. We present the superposition principle of spin-1/2 states in the form of a nonlinear addition rule for these classical coin probabilities. We illustrate the obtained formulas by the statement “God does not play dice – God plays coins.”  相似文献   

18.
Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.  相似文献   

19.
Nonlocality is one unique characteristic of quantum mechanics and an essential resource for quantum communication and computation. We investigate two measures of the well-defined geometric measurement-induced nonlocality (MIN) in the Heisenberg XYZ model, and found that considerable enhancement of the MINs can be achieved by tuning strength of the anisotropic parameter, the Jz coupling, and the Dzyaloshinsky-Moriya (DM) interaction of the model. Particularly, the maxima of the two MINs can be obtained when the strength of the Jz coupling or the DM interaction approaches infinity. We have also demonstrated the singular behaviors of the two MINs such as the nonunique states ordering and the sudden change behaviors.  相似文献   

20.
Recently Zhu (Int. J. Theor. Phys. 53, 4095, 2014) had shown that using GHZ-like states as quantum channel, it is possible to teleport an arbitrary unknown two-qubit state. We investigate this channel for the teleportation of an arbitrary N-qubit state. The strict proof through mathematical induction is presented and the rule for the receiver to reconstruct the desired state is explicitly derived in the most general case. We also discuss that if a system of quantum secret sharing of classical message is established, our protocol can be transformed to a N-qubit perfect controlled teleportation scheme from the controller’s point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号