首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we study the possibility of sustaining static and spherically symmetric traversable wormhole geometries admitting conformal motion in Einstein gravity, which presents a more systematic approach to search a relation between matter and geometry. In wormhole physics, the presence of exotic matter is a fundamental ingredient and we show that this exotic source can be dark energy type which support the existence of wormhole spacetimes. In this work we model a wormhole supported by dark energy which admits conformal motion. We also discuss the possibility of the detection of wormholes in the outer regions of galactic halos by means of gravitational lensing. Studies of the total gravitational energy for the exotic matter inside a static wormhole configuration are also performed.  相似文献   

2.
Previously, the gravitational lens of a wormhole was introduced by various researchers. Their treatment was focused basically on the lens signature that describes wormhole geometrical character such as the differences from a black hole or between any various types of wormhole models. The braneworld scenario provides the idea of spacetime with underlying extra-dimensions. The inclusion of extra-dimensional terms in the lens object spacetime line element will result in some variation in the expression for its gravitational lens deflection angle.Thus in this paper we investigate such variation by deriving this deflection angle expression. As such, this paper not only shows the existence of such variation but also suggests the potential utilization of gravitational lensing to prove the existence of extra dimensions by studying the deflection angle characteristic in accordance with the spacetime expansion rate of the universe.  相似文献   

3.
In this paper, we study gravitational lensing of magnetically charged black hole of string theory as a strong field approximation for the supermassive black hole at the center of NGC4486B. We evaluate light deflection angle numerically, from which we obtain magnifications, Einstein rings and observables for the relativistic images. Finally, we explore time delay between relativistic images when they are on the same as well as opposite side of the lens. It is concluded that charge parameter plays a prominent role in the strong gravitational lensing.  相似文献   

4.
Light traveling through a liquid crystal with disclinations perceives a geometrical background which causes lensing effects similar to the ones predicted for cosmic objects like global monopoles and cosmic strings. In this paper we explore the effective geometry as perceived by light in such media. The comparison between both systems suggests that experiments can be done in the laboratory to simulate optical properties, like gravitational lensing, of cosmic objects.  相似文献   

5.
We discuss the fermion stars, the self-gravitating systems of Fermi gases, as possible gravitational lenses. It is supposed that the fermions interact with themselves and other particles only by gravity, so they are the candidates of dark matter. We calculate Einstein deflection angles, study the image configurations, and calculate the magnification factors for a number of fermion stars that range from strong relativistic configurations to nonrelativistic ones. We find that typically there are three images, one Einstein ring and one radial critical curve for both cases. Two of the images are within the Einstein ring, and the other is outside, which may be very far. All these lensing characteristics can help to identify fermion stars as potential lensing objects, thus might give direct evidence that dark fermion stars exist in the universe.  相似文献   

6.
Light propagating in an inhomogeneous medium does not travel in straight lines. Light rays wander; they are focused, magnified and dispersed as they travel through an inhomogeneous medium. Such deflections are familiar to physicists. They are the stuff of optics. On cosmic scales light is 'deflected' in a more profound way, tracing inhomogeneities in the underlying space-time. The meandering of light rays as they propagate through the Universe encodes unique information about variations in the space-time metric. General relativity tells us these variations are impressed on the metric by inhomogeneities in the matter distribution. As a result, this 'gravitational lensing' provides information about the distribution of mass in the Universe. In this work we review briefly the main features of gravitational lensing, with an emphasis on observable effects. Remarkable progress has been made in lensing observations since 1990. We discuss some aspects of this rapid development, commenting especially on astrophysical topics where lensing studies have had a major impact. We suggest that gravitational lensing is now a standard part of the astrophysical toolkit, akin in some ways to photometry. We conclude with a discussion of areas in which lensing studies will have a strong impact in years to come, and comment on technical requirements for these future studies.  相似文献   

7.
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.  相似文献   

8.
In this letter, we have obtained static, spherically symmetric solutions of the effective vacuum Einstein field equations on a brane embedded in a five dimensional space time. The effective stress tensor is induced by the interaction with the bulk gravitational field and is given by the electric part of the five dimensional Weyl tensor. Due to traceless nature of this non-local effect of the bulk, any solution of  (4) R=0 is a possible solution of the vacuum brane. We have derived a class of solutions, which corresponds to wormhole solution. Physical properties and characteristics of the wormhole are studied.  相似文献   

9.
This review surveys some recent developments concerning the effect of the cosmological constant on the bending of light by a spherical mass in Kottler (Schwarzschild–de Sitter) spacetime. Some proposals of how such an effect may be put into a setting of gravitational lensing in cosmology are also discussed. The picture that emerges from this review is that it seems fair to assert that the contribution of Λ to the bending of light has by now been well established, while putting the Λ light-bending terms into a cosmological context is still subject to some interpretation and requires further work and clarification.  相似文献   

10.
To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain the excess of matter in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MOND scale of approximately 10(-10) m/s(2). This is a serious challenge to MOND unless lensing is qualitatively different [possibly to be developed within a covariant, such as Tensor-Vector-Scalar (TeVeS), theory].  相似文献   

11.
For ultra compact objects, light rings and fundamental photon orbits (FPOs) play a pivotal role in the theoretical analysis of strong gravitational lensing effects, and of BH shadows in particular. In this short review, specific models are considered to illustrate how FPOs can be useful in order to understand some non-trivial gravitational lensing effects. This paper aims at briefly overviewing the theoretical foundations of these effects, touching also some of the related phenomenology, both in general relativity and alternative theories of gravity, hopefully providing some intuition and new insights for the underlying physics, which might be critical when testing the Kerr black hole hypothesis.  相似文献   

12.
In a general-relativistic spacetime (Lorentzian manifold), gravitational lensing can be characterized by a lens map, in analogy to the lens map of the quasi-Newtonian approximation formalism. The lens map is defined on the celestial sphere of the observer (or on part of it) and it takes values in a two-dimensional manifold representing a two-parameter family of worldlines. In this article we use methods from differential topology to characterize global properties of the lens map. Among other things, we use the mapping degree (also known as Brouwer degree) of the lens map as a tool for characterizing the number of images in gravitational lensing situations. Finally, we illustrate the general results with gravitational lensing (a) by a static string, (b) by a spherically symmetric body, (c) in asymptotically simple and empty spacetimes, and (d) in weakly perturbed Robertson–Walker spacetimes. Received: 16 October 2000 / Accepted: 18 January 2001  相似文献   

13.
For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.  相似文献   

14.
Weak gravitational lensing has several important effects on the cosmic microwave background (CMB): it changes the CMB power spectra, induces non-Gaussianities, and generates a B-mode polarization signal that is an important source of confusion for the signal from primordial gravitational waves. The lensing signal can also be used to help constrain cosmological parameters and lensing mass distributions. We review the origin and calculation of these effects. Topics include: lensing in General Relativity, the lensing potential, lensed temperature and polarization power spectra, implications for constraining inflation, non-Gaussian structure, reconstruction of the lensing potential, delensing, sky curvature corrections, simulations, cosmological parameter estimation, cluster mass reconstruction, and moving lenses/dipole lensing.  相似文献   

15.
In this paper we show that any static and spherically symmetric anisotropic solution of the Einstein field equations can be thought as a system sourced by certain deformed isotropic system in the context of Minimal Geometric Deformation-decoupling approach. To be more precise, we developed a mechanism to obtain an isotropic solution from any anisotropic solution of the Einstein field equations. As an example, we implement the method to obtain the sources of a simple static anisotropic and spherically symmetric traversable wormhole.  相似文献   

16.
《Physics letters. A》2020,384(25):126601
We investigate the quantum thermodynamical properties of localised relativistic quantum fields, and how they can be used as quantum thermal machines. We study the efficiency and power of energy transfer between the classical gravitational degrees of freedom, such as the energy input due to the motion of boundaries or an impinging gravitational wave, and the excitations of a confined quantum field. We find that the efficiency of energy transfer depends dramatically on the input initial state of the system. Furthermore, we investigate the ability of the system to extract energy from a gravitational wave and store it in a battery. This process is inefficient in optical cavities but is significantly enhanced when employing trapped Bose Einstein condensates. We also employ standard fluctuation results to obtain the work probability distribution, which allows us to understand how the efficiency is related to the dissipation of work. Finally, we apply our techniques to a setup where an impinging gravitational wave excites the phononic modes of a Bose Einstein condensate. We find that, in this case, the percentage of energy transferred to the phonons approaches unity after a suitable amount of time. These results give a quantitative insight into the thermodynamic behaviour of relativistic quantum fields confined in cavities.  相似文献   

17.
Classical invariants of General Relativity can be used to approximate the entropy of the gravitational field. In this work, we study two proposed estimators based on scalars constructed out from the Weyl tensor, in Kerr spacetime. In order to evaluate Clifton, Ellis and Tavakol’s proposal, we calculate the gravitational energy density, gravitational temperature, and gravitational entropy of the Kerr spacetime. We find that in the frame we consider, Clifton et al.’s estimator does not reproduce the Bekenstein–Hawking entropy of a Kerr black hole. The results are compared with previous estimates obtained by the authors using the Rudjord–Gr \(\varnothing \) n–Hervik approach. We conclude that the latter represents better the expected behaviour of the gravitational entropy of black holes.  相似文献   

18.
In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space–time configurations in the Dvali–Gabadadze–Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space–time structure will open in terms of the 2σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z < 0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space–time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space–time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.  相似文献   

19.
We study light rays in the static and spherically symmetric gravitational field of the null aether theory (NAT). To this end, we employ the Gauss-Bonnet theorem to compute the deflection angle formed by a NAT black hole in the weak limit approximation. Using the optical metrics of the NAT black hole, we first obtain the Gaussian curvature and then calculate the leading terms of the deflection angle. Our calculations indicate how gravitational lensing is affected by the NAT field. We also illustrate that the bending of light stems from global and topological effects.  相似文献   

20.
Gravitational waves can act as gravitationallenses and create multiple images of a light source.This situation is much more interesting thansingle-image lensing because of the associatedhigh-amplification events that may lead to the indirect detectionof gravitational waves. It is proposed to observe theeffect due to gravitational waves generated in supernovaexplosions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号