首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this note, releasing the restriction on operators which are observables (self-adjoint), a generalization of the Wigner-Yanase-Dyson skew information is given. We study some properties of the generalization of the Wigner-Yanase-Dyson skew information and related quantities from the operator theory point of view. In particular, an elementary proof of the convexity with the Wigner-Yanase-Dyson skew information is obtained.  相似文献   

2.

Uncertainty relation is a core issue in quantum mechanics and quantum information theory. We introduce modified generalized Wigner-Yanase-Dyson (MGWYD) skew information and modified weighted generalized Wigner-Yanase-Dyson (MWGWYD) skew information, and establish new uncertainty relations in terms of the MGWYD skew information and MWGWYD skew information.

  相似文献   

3.
The Wigner-Yanase-Dyson information is an important variant of quantum Fisher information. Two fundamental requirements concerning this notion of information content originally postulated by Wigner and Yanase are convexity and superadditivity. The former was fully established by Lieb in 1973, and led to the first proof of the strong subadditivity of quantum entropy. The latter, although widely believed to be true, was quite recently disproved by Hansen. Nevertheless, superadditivity has also been established in two extreme cases, i.e., when the states are pure or classical. In this paper, we first review a scheme to classify bipartite states into a hierarchy of classical, semi-quantum, and quantum states, which are arranged in the order of increasing quantumness. We then prove the superadditivity of the Wigner-Yanase-Dyson information for all semi-quantum states. The convexity of the Wigner-Yanase-Dyson information plays a crucial role here.  相似文献   

4.
Following recent advances in the theory of operator monotone functions we introduce new classes of WYD-like skew information measures.  相似文献   

5.
A measure of entanglement on n qubits is defined in terms of Wigner-Yanase skew information. It is shown that the measure coincides essentially with the concurrence on two qubits. This uncovers the information-theoretic meaning of the concurrence of entangled states.  相似文献   

6.
We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner–Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner–Yanase–Dyson skew informations.  相似文献   

7.
We introduce an index based on information theory to quantify the stationarity of a stochastic process. The index compares on the one hand the information contained in the increment at the time scale τ of the process at time t with, on the other hand, the extra information in the variable at time t that is not present at time tτ. By varying the scale τ, the index can explore a full range of scales. We thus obtain a multi-scale quantity that is not restricted to the first two moments of the density distribution, nor to the covariance, but that probes the complete dependences in the process. This index indeed provides a measure of the regularity of the process at a given scale. Not only is this index able to indicate whether a realization of the process is stationary, but its evolution across scales also indicates how rough and non-stationary it is. We show how the index behaves for various synthetic processes proposed to model fluid turbulence, as well as on experimental fluid turbulence measurements.  相似文献   

8.
As a direct consequence of the interplay between the superposition principle of quantum mechanics and the dynamics of open systems, decoherence is a recurring theme in both foundational and experimental exploration of the quantum realm. Decoherence is intimately related to information leakage of open systems and is usually formulated in the setup of “system + environment” as information acquisition of the environment (observer) from the system. As such, it has been mainly characterized via correlations (e.g., quantum mutual information, discord, and entanglement). Decoherence combined with redundant proliferation of the system information to multiple fragments of environment yields the scenario of quantum Darwinism, which is now a widely recognized framework for addressing the quantum-to-classical transition: the emergence of the apparent classical reality from the enigmatic quantum substrate. Despite the half-century development of the notion of decoherence, there are still many aspects awaiting investigations. In this work, we introduce two quantifiers of classicality via the Jordan product and uncertainty, respectively, and then employ them to quantify decoherence from an information-theoretic perspective. As a comparison, we also study the influence of the system on the environment.  相似文献   

9.
Resource theory is applied to quantify the quantum correlation of a bipartite state and a computable measure is proposed. Since this measure is based on quantum coherence, we present another possible physical meaning for quantum correlation, i.e., the minimum quantum coherence achieved under local unitary transformations. This measure satisfies the basic requirements for quantifying quantum correlation and coincides with concurrence for pure states. Since no optimization is involved in the final definition, this measure is easy to compute irrespective of the Hilbert space dimension of the bipartite state.  相似文献   

10.
We investigate the non-Markovian behavior in open quantum systems from an information-theoretic perspective. Our main tool is the max-relative entropy, which quantifies the maximum probability with which a state ρ can appear in a convex decomposition of a state σ. This operational interpretation provides a new view for the non-Markovian process.We also find that max-relative entropy can be the witness and measure of non-Markovian processes. As applications, some examples are also given and compared with other measures in this paper.  相似文献   

11.
Journal of Russian Laser Research - Under the cross-Kerr effect, we investigate two different forms of quantum correlations in an optomechanical system consisting of a mechanical mode coupled with...  相似文献   

12.
In this paper, we first define a generalized (f,g)-skew information \(\left |I_{ \rho }^{(f, g)}\right |(A)\) and two related quantity \(\left |J_{ \rho }^{(f, g)}\right |(A)\) and \(\left |U_{ \rho }^{(f, g)}\right |(A)\) for any non-Hermitian Hilbert-Schmidt operator A and a density operator ρ on a Hilbert space H and discuss some properties of them. And then, we obtain the following uncertainty relation in terms of \(\left |U_{ \rho }^{(f, g)}\right |(A)\):
$$\begin{array}{@{}rcl@{}} \left|U_{ \rho}^{(f, g)}\right|(A)\left|U_{ \rho}^{(f, g)}\right|(B)\geq \beta_{(f, g)}\left|Tr\left( f(\rho)g(\rho)[A, B]^{0}\right)\right|^{2}, \end{array} $$
which is a generalization of a known uncertainty relation in Ko and Yoo (J. Math. Anal. Appl. 383, 208–214, 11).
  相似文献   

13.
The quantification of the quantumness of a quantum ensemble has theoretical and practical significance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the constituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information.  相似文献   

14.

The quantum Fisher information defined via the symmetric logarithmic derivative and the skew information are two different aspects describing the information contents of quantum mechanical density operators. They are considered as natural generalizations of the classical Fisher information and constitute key ingredients in the emerging field of quantum metrology. In this paper, we give the analytical expression of quantum Fisher information and skew information for two-qubit system prepared in a two-qubit state of X type.

  相似文献   

15.
We give a truly elementary proof of the convexity of metric-adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric-adjusted skew information. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner–Yanase–Dyson skew informations for such states. We extend this result to the general metric-adjusted skew information. We finally show that a recently introduced extension to parameter values 1 < p ≤ 2 of the WYD-information is a special case of (unbounded) metric-adjusted skew information.  相似文献   

16.
Entropy-based measures are an important tool for studying human gaze behavior under various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify the predictability of a visual scanpath as the entropy of transitions between fixations and has been shown to correlate with changes in task demand or changes in observer state. Measuring scanpath predictability is thus a promising approach to identifying viewers’ cognitive states in behavioral experiments or gaze-based applications. However, GTE does not account for temporal dependencies beyond two consecutive fixations and may thus underestimate the actual predictability of the current fixation given past gaze behavior. Instead, we propose to quantify scanpath predictability by estimating the active information storage (AIS), which can account for dependencies spanning multiple fixations. AIS is calculated as the mutual information between a processes’ multivariate past state and its next value. It is thus able to measure how much information a sequence of past fixations provides about the next fixation, hence covering a longer temporal horizon. Applying the proposed approach, we were able to distinguish between induced observer states based on estimated AIS, providing first evidence that AIS may be used in the inference of user states to improve human–machine interaction.  相似文献   

17.
We quantify the nonclassicality of multimode bosonic field states by adopting an information-theoretic approach involving the Wigner-Yanase skew information. The fundamental properties of the quantifier such as convexity, superadditivity, monotonicity, and conservation relations are revealed. The quantifier is illustrated by a variety of typical examples, and applications to the quantification of nonclassical correlations are discussed. Various extensions are indicated.  相似文献   

18.
We discuss the notions of mutual information and conditional information for noncomposite systems, classical and quantum; both the mutual information and the conditional information are associated with the presence of hidden correlations in the state of a single qudit. We consider analogs of the entanglement phenomena in the systems without subsystems related to strong hidden quantum correlations.  相似文献   

19.
Eukaryotic cells are able to sense shallow chemical gradients by surface receptors and migrate toward chemoattractant sources. The accuracy of this chemotactic response relies on the ability of cells to infer gradients from the heterogeneous distribution of receptors bound by diffusing chemical molecules. Ultimately, the precision of gradient sensing is limited by the fluctuations of signaling components, including the stochastic receptor occupancy and noisy intracellular processing. Viewing the system as a Markovian communication channel, we apply techniques from information theory to derive upper bounds on the amount of information that can be reliably transmitted through a chemotactic cell. Specifically, we derive an expression for the mutual information between the gradient direction and the spatial distribution of bound receptors. We also compute the mutual information between the gradient direction and the motility direction using three different models for cell motion. Our results can be used to quantify the information loss during the various stages of directional sensing in eukaryotic chemotaxis.  相似文献   

20.
The dynamics of the skew information (SI) is investigated for a single Cooper Pair Box (CPB) interacting with a single cavity field. By suitably choosing the system parameters and precisely controlling the dynamics, novel connection is found between the SI and entanglement generation. It is shown that SI can be increased and reach its maximum value either by increasing the number of photons inside the cavity or considering the far off-resonant case.The number of oscillations of SI is increased by decreasing this ratio between the Josephson junction capacity and the gate capacity. This leads to significant improvement of the travelling time between the maximum and minimum values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号