首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
宋占锋  王亚东  邵慧彬  孙志刚 《中国物理 B》2011,20(7):77302-077302
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin—orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin—orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.  相似文献   

3.
Blue InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) are simulated by the APSYS software with a non-local quantum well transport model which is used to describe the phenomenon that carriers can fly over the quantum wells directly. The simulation results based on this model are in good agreement with the experiment and show its significant influence on the output power, carrier transport, peak wavelength and current crowding effect of the InGaN/GaN MQW LEDs, indicating that the non-local quantum well transport plays an important role in these devices.  相似文献   

4.
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.  相似文献   

5.
《光谱学快报》2013,46(5-6):449-459
Product operator theory is a simple quantum mechanical method that has often been used to analytically describe multi‐pulse NMR experiments for weakly coupled spin systems. Considering the existence of 2D‐J resolved NMR spectra of aqueous solutions containing S = 5/2 nuclear spins, the product operator formalism has been extended to the weakly coupled IS (I = 1/2, S = 5/2) spin system. The evolution of Ix, Iy, IxSz and IySz product operators under spin–spin coupling Hamiltonian are given here. The analytical results obtained are applied to the well‐known gated decoupler pulse sequence for heteronuclear 2D‐J resolved NMR spectroscopy.  相似文献   

6.
The performance of quaternary Al0.08In0.08Ga0.84N multi-quantum well (MQW) laser diodes (LDs) using the simulation program of Integrated System Engineering Technical Computer Aided design (ISE TCAD) was studied. The simulation results show that the low threshold current, high output power and slope efficiency can be obtained when the quantum wells number is 4. Although, the fourth quantum well which placed in the right side (n-side) of the active region has a negative value of optical gain this means that the optical gain does not occur in this quantum well of laser structure. However, high external differential quantum efficiency (DQE) inside the active region was also observed. Optical gain and intensity were increased when the numbers of quantum wells increase reached 4. The built-in electric field effect inside the quantum well leads to the reduction of the overlap integral between the electrons and holes by separating their wave function was included. As well as, Al0.25In0.08Ga0.67N electron blocking layer (EBL) employed to enhance the performance of Al0.08In0.08Ga0.84N MQW LDs by increasing the optical confinement factor (OCF) inside the quantum wells.  相似文献   

7.
Spin transport properties in a non-uniform quantum wire (QW) in the presence of both the Rashba and Dresselhaus spin–orbit couplings (SOCs) is investigated by using the non-equilibrium Green's function (NEGF) method combined with the Landauer Büttiker formalism. It is found that such a non-uniform quantum wire exhibits considerable spin polarization in its conductance in the influence of both the Rashba and Dresselhaus SOCs, and that the two SOCs' strengths strongly affect both the magnitude and sign of the electron spin polarization. Interestingly, the Rashba and Dresselhaus SOCs play the same modulating role in the electron spin polarization. The proposed nanostructure can potentially be utilized to devise an all-electrical spintronic device.  相似文献   

8.
The energy spectrum and dipole matrix elements of a multiple quantum well (MQW) system has been calculated numerically by solving the time-independent Schrödinger equation using finite difference method, in the presence of magnetic field. The effect of barrier width is also investigated. The energy difference between the levels of various minibands and the energy difference between various levels of the same miniband is calculated for different number of wells in the MQW. Finally, the dynamics of the system in short laser pulses has been calculated numerically by solving the time-dependent Schrödinger equation. The effect of magnetic field on the dynamics is clearly shown and explained.  相似文献   

9.
m面蓝宝石上ZnO/ZnMgO多量子阱的制备及发光特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
宿世臣  吕有明  梅霆 《物理学报》2011,60(9):96801-096801
利用等离子体辅助分子束外延设备(P-MBE)在m面的蓝宝石(m-Al2O3)衬底上制备了ZnO/Zn0.85Mg0.15O多量子阱.反射式高能电子衍射谱(RHEED)图样的原位观察表明,多量子阱结构是以二维模式生长的.从光致发光谱中可以看到ZnO/Zn0.85Mg0.15O多量子阱在室温仍具有明显的量子限域效应.在290 K时阱宽为3 nm的ZnO/Zn0.85关键词: 等离子体辅助分子束外延 ZnO多量子阱 光致发光  相似文献   

10.
缪希茄  卢广  叶朝辉 《物理学报》1997,46(4):802-812
从积算符理论和实验上详细地研究了弱耦合双自旋体系(CHCl3的C-H双自旋体系)的Raman磁共振谱.对不同射频场强度及频偏的Raman谱进行了细致的理论和实验研究,表明积算符理论的计算与实验不仅在弱射频场而且在强射频场时都符合得相当好,克服了微扰论的局限,这为进一步研究复杂自旋体系的Raman谱提供了强有力的理论方法.研究还表明,小的射频频偏将有利于多量子跃迁信号的观测,而适当的射频场强则会提高多量子峰的强度 关键词:  相似文献   

11.
The multiple quantum wells (MQW) Mg0.27Zn0.73O/ZnO have been grown by pulsed laser deposition method with different well width L w . The optical and structural characteristics of MQW Mg0.27Zn0.73O/ZnO have been investigated. The quantum confinement effect showing up in the blue shift of exciton peak in low temperature (8 K) photoluminescence spectra at well width reduction has been studied. It is established that intensity exciton peak I ex and Einstein’s characteristic temperature Θ E increase at reduction of well width L w . It is revealed that the discontinuity ratio of conduction and a valence bands in heterostructure Mg0.27Zn0.73O/ZnO is 0.65/0.35 that corresponds to the literature.  相似文献   

12.
Using the full potential linearized augmented plane wave (FLAPW) method, we have investigated the adatom or vacancy defect induced magnetic properties of hexagonal boron nitride (h-BN) monolayer. It has been observed that the N vacancy defect has no influence on the magnetic property of h-BN, whereas the B vacancy defect caused spin polarization in the nearest three N atoms. The total magnetic moment is about 0.87 μB within muffin-tin radius (0.29 μB per N atom) and the spin polarized N atoms show metallic feature. In the presence of B adatom defect, we have obtained rather weak spin polarization about 0.1 μB. However, the sizable magnetic moment of 0.38 μB appears in N adatom defect. Both B and N adatom defect systems preserve very close to semiconducting feature with a finite band gap. We have found that the DOS and the XMCD spectral shapes are strongly dependent on the defect type existing in the h-BN monolayer and this finding may help reveal the origin of magnetism in the h-BN layer if one performs surface sensitive experiment such as spin polarized scanning tunneling microscopy or XMCD measurement in the near future.  相似文献   

13.
Spin-dependent electron transport in a periodically stubbed quantum wire in the presence of Rashba spin-orbit interaction (SOI) is studied via the nonequilibrium Green’s function (GF) method combined with the Landauer-Büttiker formalism. By comparing with a straight Rashba quantum wire, the magnitude of spin conductance can be enhanced obviously. In addition, the charge and spin switching can also be found in the considered system. The mechanism of these transport properties is revealed by analyzing the total charge density and spin-polarized density distributions in the stubbed quantum wire. Furthermore, periodic spin-density islands with high polarization are also found inside the stubs, owing to the interaction between the charge density islands and the Rashba SOI-induced effective magnetic field. These interesting findings may be useful in further understanding of the transport properties of low-dimensional systems and in devising an all-electrical multifunctional spintronic device based on the proposed structure.  相似文献   

14.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

15.
基于压电陶瓷精密微位移系统的扫描探测技术是目前精密测量仪器进行微纳区域/结构性能测试的核心系统,但压电陶瓷材料存在迟滞、非线性问题,限制了对微位移分辨能力的提升.本文以金刚石氮空位色心为敏感单元,利用电子自旋效应对磁场强度的高分辨敏感机理,结合永磁体周围不同位置对应的磁场强度变化关系,提出了一种基于金刚石氮空位色心电子自旋敏感机理的微位移检测方法.通过建立电子自旋效应与微位移的关联模型,搭建了相应的微位移测量系统.经实验验证,该系统对微位移测试的灵敏度为16.67 V/mm,检测分辨率达到60 nm,实现了对微位移的高分辨率测量.并通过理论分析,该系统的微位移测量分辨率可进一步提升至亚纳米级水平,为新型微位移测量技术提供了发展方向和研究思路.  相似文献   

16.
We investigate theoretically charge and spin pumps based on a linear configuration of quantum dots (quantum wire) which are disturbed by an external time-dependent perturbation. This perturbation forms an impulse which moves as a train pulse through the wire. It is found that the charge pumped through the system depends non-monotonically on the wire length, N. In the presence of the Zeeman splitting pure spin current flowing through the wire can be generated in the absence of charge current. Moreover, we observe electron pumping in a direction which does not coincide with the propagation direction of the pulse and the spin pumping direction (spin-charge separation). Additionally, on-site spin-flip processes significantly influence electron transport through the system and can also reverse the charge current direction.  相似文献   

17.
Two-dimensional (2D) closed-cavity single quantum well (SQW) and multiple quantum well (MQW) structures are proposed based on the traditional 2D open-cavity SQW structures of photonic crystals. The numerical calculation results show that the proposed structures can greatly improve the optical characteristics compared with the traditional structures. It is found that the barrier thickness has a great impact on the optical characteristics of the closed-cavity MQW structures: when the barrier thickness is narrower, each resonant peak which appears in the SQW would split, the number of split times is just equal to the number of wells, and each well in the MQW structures is a travelling-wave-well, similar to the well in the open-cavity SQW structures; when the barrier thickness is wider, there is no effect of spectral splitting, and each well in the MQW structures is a standing-wave-well, just like the well in the closed-cavity SQW. The physical origin of different field distributions and the effect of the spectral splitting are provided.  相似文献   

18.
Hole structure of a GaAs–Al0.3Ga0.7Asp-type multiple quantum well (MQW) subjected to an electric field parallel to the growth axis is studied using the envelope-function approximation and taking into account the valence subband mixing. The system considered in this work consists of five GaAs wells and six thick Al0.3Ga0.7As barriers. The valence subband structure and the optical-absorption coefficient are calculated as functions of the electric-field strength for various doping levels. The subband structure is shown to be nonparabolic and anisotropic in the plane of the layers with a four-fold symmetry. The spin splitting due to the lack of specular symmetry of quantum wells is a growing function of the electric-field strength. The calculated optical absorption is in good agreement with the experimental spectra.  相似文献   

19.
As the quantum states of nitrogen vacancy (NV) center can be coherently manipulated and obtained at room temperature, it is important to generate steady-state spin squeezing in spin qubits associated with NV impurities in diamond. With this task we consider a new type of a hybrid magneto-nano-electromechanical resonator, the functionality of which is based on a magnetic-field induced deflection of an appropriate cantilever that oscillates between NV spins in diamond. We show that there is bistability and spin squeezing state due to the presence of the microwave field, despite the damping from mechanical damping. Moreover, we find that bistability and spin squeezing can be controlled by the microwave field and the parameter VzVz. Our scheme may have the potential application on spin clocks, magnetometers, and other measurements based on spin–spin system in diamond nanostructures.  相似文献   

20.
We demonstrate that an equilibrium spin current in a 2D electron gas with Rashba spin-orbit interaction (Rashba medium) results in a mechanical torque on a substrate near an edge of the medium. If the substrate is a cantilever, the mechanical torque displaces the free end of the cantilever. The effect can be enhanced and tuned by a magnetic field. Observation of this displacement would be an effective method to prove the existence of equilibrium spin currents. The analysis of edges of the Rashba medium demonstrates the existence of localized edge states. They form a 1D continuum of states. This suggests a new type of quantum wire: spin-orbit quantum wire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号