首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical properties of the scalar expansion in the cosmic fluid are investigated, especially near the future singularity, when the fluid possesses a constant bulk viscosity ζ. In addition, we assume that there is a Casimir-induced term in the fluid’s energy-momentum tensor, in such a way that the Casimir contributions to the energy density and pressure are both proportional to 1/a 4, a being the scale factor. A series expansion is worked out for the scalar expansion under the condition that the Casimir influence is small. Close to the Big Rip singularity the Casimir term has however to fade away and we obtain the same singular behavior for the scalar expansion, the scale factor, and the energy density, as in the Casimir-free viscous case.  相似文献   

2.
We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kBm, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage of the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.  相似文献   

3.
In this study, we have investigated the dynamics of non-static Gödel type rotating universe with massive scalar field, viscous fluid and heat flow in the presence of cosmological constant. For various cosmic matter forms, the behavior of the cosmological constant (Λ), shear (η) and bulk (ξ) viscosity coefficients and other kinematic quantities have studied in the early universe. We have showed the decay of massive scalar field in the non-static rotating Gödel type universe and we have obtained constant scalar field with and without source density. Also, we have investigated the effects of massive scalar field on the matter density and pressure. From solutions of the field equations, we have a cosmological model with non-zero expansion, shear, heat flux and rotation. Also some physical and geometrical aspects of the model discussed.  相似文献   

4.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

5.
This paper determines the existence of Noether symmetry in non-minimally coupled f(RT) gravity admitting minimal coupling with scalar field models. We consider a generalized spacetime which corresponds to different anisotropic and homogeneous universe models. We formulate symmetry generators along with conserved quantities through Noether symmetry technique for direct and indirect curvature–matter coupling. For dust and perfect fluids, we evaluate exact solutions and construct their cosmological analysis through some cosmological parameters. We conclude that decelerated expansion is obtained for the quintessence model with a dust distribution, while a perfect fluid with dominating potential energy over kinetic energy leads to the current cosmic expansion for both phantom as well as quintessence models.  相似文献   

6.
The warm inflation scenario in view of the modified Chaplygin gas is studied. We consider the inflationary expansion to be driven by a standard scalar field whose decay ratio \(\Gamma \) has a generic power-law dependence with the scalar field \(\phi \) and the temperature of the thermal bath T. By assuming an exponential power-law dependence in the cosmic time for the scale factor a(t), corresponding to the intermediate inflation model, we solve the background and perturbative dynamics considering our model to evolve according to (1) weak dissipative regime and (2) strong dissipative regime. Specifically, we find explicit expressions for the dissipative coefficient, scalar potential, and the relevant inflationary observables like the scalar power spectrum, scalar spectral index, and tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to weak or strong dissipative regime, and the 2015 Planck results through the \(n_s\)r plane.  相似文献   

7.
We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a 0 ? l P (where l P is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n F ) to energy density ε(n F ) dependent on the number density of fermions n F . As the early Universe expands, the dimensionless quantity ν(n F ) = P(n F )/ε(n F ) decreases with decreasing n F from its maximum value νmax = 1 for n F → ∞ to zero for n F → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n F )–ε(n F )–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R c =–μ2/ξ and radius a c ? a 0. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G N .  相似文献   

8.
In this paper, we investigate the Noether symmetries of F(T) cosmology involving matter and dark energy. In this model, the dark energy is represented by a canonical scalar field with a potential. Two special cases for dark energy are considered, including phantom energy and quintessence. We obtain F(T)~T 3/4, and the scalar potential V(?)~? 2 for both models of dark energy and discuss quantum picture of this model. Some astrophysical implications are also discussed.  相似文献   

9.
In this paper, we consider F(R)=R+f(R) theory instead of Einstein gravity with conformal anomaly and look for its analytical solutions. Depending on the free parameters, one may obtain both uncharged and charged solutions for some classes of F(R) models. Calculation of Kretschmann scalar shows that there is a singularity located at r=0. The geometry of uncharged (charged) solution corresponds to the Schwarzschild (Reissner–Nordström) singularity. Further, we discuss the viability of our models in detail. We show that these models can be stable, depending on their parameters and in different epochs of the universe.  相似文献   

10.
We introduce a new cosmological diagnostic pair {r, s} called the Statefinder. The Statefinder is a geometrical diagnostic and allows us to characterize the properties of dark energy in a model-independent manner. The Statefinder is dimensionless and is constructed from the scale factor of the Universe and its time derivatives only. The parameter r forms the next step in the hierarchy of geometrical cosmological parameters after the Hubble parameter H and the deceleration parameter q, while a is a linear combination of q and r chosen in such a way that it does not depend upon the dark energy density. The Statefinder pair {r, s} is algebraically related to the equation of state of dark energy and its first time derivative. The Statefinder pair is calculated for a number of existing models of dark energy having both constant and variable w. For the case of a cosmological constant, the Statefinder acquires a particularly simple form. We demonstrate that the Statefinder diagnostic can effectively differentiate between different forms of dark energy. We also show that the mean Statefinder pair can be determined to very high accuracy from a SNAP-type experiment.  相似文献   

11.
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b(a) = b_0 a + b_e(1-a), where at the earlytime the coupling is given by a constant b_e and today the coupling is described by another constant b_0. We explore six specific models with(i) Q = b(a)H_0ρ_0,(ii) Q = b(a)H_0ρ_(de),(iii) Q = b(a)H_0ρ_c,(iv) Q = b(a)Hρ_0,(v) Q = b(a)Hρ_(de), and(vi) Q = b(a)Hρ_c.The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements,and the Hubble constant direct measurement. We find that, for all the models, we have b_0 0 and b_e 0 at around the 1σ level,and b_0 and b_e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.  相似文献   

12.
f(RT) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(RT) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter–geometry coupling within the f(RT) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter–geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(RT) formalism in order to check its reliability in other fields, rather than cosmology.  相似文献   

13.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

14.
In this paper, we analyze the phase-space of a model of dark energy in which a non-canonical scalar field (tachyon) non-minimally coupled to torsion scalar in the framework of teleparallelism. Scalar field potential and non-minimal coupling function are chosen as V(?) = V0?n and f(?) = ?N, respectively. We obtain a critical point that behaves like a stable or saddle point depending on the values of N and n. Additionally we find an unstable critical line. We have shown such a behavior of critical points using numerical computations and phase-space trajectories explicitly.  相似文献   

15.
We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani (J. Math. Phys. 48:023302, [2007]), our result proves that in the low density limit the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8π a ? u ? d , where ? u(d) denotes the density of the spin-up (down) particles, and a is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.  相似文献   

16.
This mini-review is dedicated to the 85th birthday of Prof. L.V. Keldysh, from whom we have learned so much. In this paper, we study the potential and electron density depth profiles in surface accumulation layers in crystals with a large and nonlinear dielectric response such as SrTiO3 (STO) in the cases of planar, spherical, and cylindrical geometries. The electron gas can be created by applying an induction D0 to the STO surface. We describe the lattice dielectric response of STO using the Landau–Ginzburg free energy expansion and employ the Thomas–Fermi (TF) approximation for the electron gas. For the planar geometry, we arrive at the electron density profile n(x) ∝ (x + d)–12/7, where dD0–12/7. We extend our results to overlapping electron gases in GTO/STO/GTO heterojunctions and electron gases created by spill-out from NSTO (heavily n-type doped STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big TF atom with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with a nuclear charge Ze where Z > 170, electrons collapse onto the nucleus, resulting in a net charge Zn < Z. Here, instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value ZcR/a, where a is the lattice constant. The net charge eZn grows with Z until Z exceeds Z* ≈ (R/a)9/7. After this point, the charge number of the compact core Zn remains ≈ Z*, with the rest Z* electrons forming a sparse TF atom with it. We extend our studies of collapse to the case of long cylindrical clusters as well.  相似文献   

17.
A new dark energy model called “ghost dark energy” was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order \({\Lambda }^{3}_{QCD}\) and Λ Q C D ~ 100M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed \({v_{s}^{2}}\) the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.  相似文献   

18.
19.
The contributions to the parameters S, T, and U of radiative corrections from the doublets of scalar leptoquarks and scalar gluons are analyzed within the minimal model based on four-color symmetry of the Pati-Salam type. It is shown that current experimental data on the parameters S, T, and U admit the existence of relatively light scalar leptoquarks and scalar gluons (of mass lower than 1 TeV), the best fit to experimental data being attained at mass values not greater than 400 GeV. In particular, the existence of scalar leptoquarks of mass below 300 GeV is found to be compatible with data on the parameters S, T, and U at χ2 < 3.1 (3.2) for mH = 115 (300) GeV as against χ SM 2 = 3.5 (5.0) in the Standard Model. The mass of the lightest scalar gluon is then predicted to be less than 850 (720) GeV. It is emphasized that the aforementioned doublets of scalar leptoquarks and scalar gluons can play a significant role in processes involving a t quark at LHC.  相似文献   

20.
A two dimensional picture of the thick center vortex model is introduced. The spatial extent of the Wilson loop is oriented along the line with equation y = b x and the vortex movement is considered on the x ? y plane. A two-variable function with one free parameter a is considered as the vortex profile where a is proportional to the inverse of the vortex thickness. The potentials obtained from the two dimensional picture obey the N-ality dependence at large distances and Casimir scaling at intermediate distances. Furthermore, the concavity of the potentials corresponding to higher representations is slightly decreased in the two dimensional picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号