首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
We study the effect of quantum noise on history dependent quantum Parrondo’s games by taking into account different noise channels. Our calculations show that entanglement can play a crucial role in quantum Parrondo’s games. It is seen that for the maximally entangled initial state in the presence of decoherence, the quantum phases strongly influence the payoffs for various sequences of the game. The effect of amplitude damping channel leads to winning payoffs. Whereas the depolarizing and phase damping channels lead to the losing payoffs. In case of amplitude damping channel, the payoffs are enhanced in the presence of decoherence for the sequence AAB. This is because the quantum phases interfere constructively which leads to the quantum enhancement of the payoffs in comparison to the undecohered case. It is also seen that the quantum phase angles damp the payoffs significantly in the presence of decoherence. Furthermore, it is seen that for multiple games of sequence AAB, under the influence of amplitude damping channel, the game still remains a winning game. However, the quantum enhancement reduces in comparison to the single game of sequence AAB because of the destructive interference of phase dependent terms. In case of depolarizing channel, the game becomes a loosing game. It is seen that for the game sequence B the game is loosing one and the behavior of sequences B and BB is similar for amplitude damping and depolarizing channels. In addition, the repeated games of A are only influenced by the amplitude damping channel and the game remains a losing game. Furthermore, it is also seen that for any sequence when played in series, the phase damping channel does not influence the game.  相似文献   

2.
We study the behavior of cooperative multiplayer quantum games [Q. Chen, Y. Wang, J.T. Liu, and K.L. Wang, Phys. Lett. A 327 (2004) 98; A.P. Flitney and L.C.L. Hollenberg, Quantum Inf. Comput. 7 (2007) 111] in the presence of decoherence using different quantum channels such as amplitude damping, depolarizing and phase damping. It is seen that the outcomes of the games for the two damping channels with maximum values of decoherence reduce to same value. However, in comparison to phase damping channel, the payoffs of cooperators are strongly damped under the influence amplitude damping channel for the lower values of decoherence parameter. In the case of depolarizing channel, the game is a no-payoff game irrespective of the degree of entanglement in the initial state for the larger values of decoherence parameter. The decoherence gets the cooperators worse off.  相似文献   

3.
We study the effect of decoherence on quantum Monty Hall problem under theinfluence of amplitude damping, depolarizing, and dephasing channels. It isshown that under the effect of decoherence, there is a Nash equilibrium ofthe game in case of depolarizing channel for Alice's quantum strategy.Whereas in case of dephasing noise, the game is not influenced by thequantum channel. For amplitude damping channel, Bob's payoffs are foundsymmetrical about a decoherence of 50% and the maximum occurs at this value of decoherence for his classical strategy. However, it is worth-mentioning that in case of depolarizing channel, Bob's classical strategy remains always dominant against any choice of Alice's strategy.  相似文献   

4.
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv:1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners’ Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game’s properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.  相似文献   

5.
石甲栋  吴韬  宋学科  叶柳 《中国物理 B》2014,23(2):20310-020310
In this paper,we investigate the entanglement dynamics of a two-qubit entangled state coupled with its noisy environment,and plan to utilize weak measurement and quantum reversal measurement to study the entanglement dynamics under different decoherence channels in noninertial frames.Through the calculations and analyses,it is shown that the weak measurement can prevent entanglement from coupling to the amplitude damping channel,while the system is under the phase damping and flip channels.This protection protocol cannot prevent entanglement but will accelerate the death of entanglement.In addition,if the system is in the noninertial reference frame,then the effect of weak measurement will be weakened for the amplitude damping channel.Nevertheless,for other decoherence channels,the Unruh effect does not affect the quantum weak measurement,the only exception is that the maximum value of entanglement is reduced to√2/2of the original value in the inertial frames.  相似文献   

6.
《中国物理 B》2021,30(6):60315-060315
The fine-grained uncertainty relation(FUR) is investigated for accelerating open quantum system, which manifests the celebrated Unruh effect, a crucial piece of the jigsaw for combining relativity and quantum physics. For a single detector, we show that the inevitable Unruh decoherence can induce a smaller FUR uncertainty bound, which indicates an additional measurement uncertainty may exist. For an open system combined with two detectors, via a nonlocal retrieval game, the related FUR uncertainty bound is determined by the non-classical correlation of the system. By estimating the maximal violation of Bell inequality for an accelerating system, we show that the FUR uncertainty bound can be protected from Unruh decoherence, due to quantum correlation generated through Markovian dynamics.  相似文献   

7.
赵军龙  张译丹  杨名 《物理学报》2018,67(14):140302-140302
量子度量学是研究量子测量与统计推断的一门学科,主要利用量子手段来提高参数估计的精度,在量子信息处理与测量中起到关键作用.量子参数估计的一般过程包含四个步骤:探针态的制备、参数化过程、对参数化后的输出态进行测量以及根据测量结果估计待测参数.其中探针态的选取对测量精度起着至关重要的作用.然而在实际的量子探针态的制备过程中,初始探针态会受到环境噪声的影响.目前人们已经研究了W态与Greenberger-Horne-Zeilinger(GHZ)态的量子Fisher信息(QFI)在典型噪声通道下的变化行为.由于W态与GHZ态有着不同的纠缠性质,对于W态与GHZ态的叠加态的QFI动力学研究具有重要的实际意义.故此,本文主要研究典型噪声通道对这两种状态的叠加态的QFI动力学行为的影响,得出了QFI随噪声参数的变化行为.结果表明,叠加态中W态组分可明显对抗相位阻尼噪声对探针态的QFI的影响,而其中的GHZ态组分可明显对抗振幅阻尼噪声的影响,从而为在实际环境中选取高精度的参数估计过程提供参考.  相似文献   

8.
In the process of quantum information transport, environment inevitably causes decoherence and disentanglement. It is effective to constitute a hybrid qubit system by taking advantages of different types of qubits to overcome the effects of decoherence and achieve quantum information transport. We find that energy relaxation exists in the process of information exchange bewteen the hybrid qubits. Combining this kind of energy relaxation with the decoherence effects from external environment, quantum information transport of non-disentangled effect can be achieved in phase damping channel if the exchange decay rate and decoherence time satisfy certain constraint relations. We discuss the scheme to achieve the constraint relations through combining specific quantum circuits.  相似文献   

9.
The topological expression of the reduced quantum trajectory is given by using ø-mapping topological current theory. The topological expression is used in study of the coherence and the decoherence. We find the expression of vorticity for decoherence has a similar form as that for coherence. Atopological reason leading to the decoherence is given and a new parameter is defined to indicate the coherence degree. The parameter is different from the damping factor because it relates to the topological structure of the reduced quantum trajectory.  相似文献   

10.
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources.  相似文献   

11.
L. Stodolsky 《Physics Reports》1999,320(1-6):51-58
We discuss fluctuations in the measurement process and how these fluctuations are related to the dissipational parameter characterizing quantum damping or decoherence. On the example of the measuring current of the variable-barrier or QPC problem we discuss the extra noise or fluctuation connected with the different possible outcomes of a measurement. This noise has an enhanced short time component which could be interpreted as due to “telegraph noise” or “wavefunction collapses”. Furthermore, the parameter giving the strength of this component is related to the parameter giving the rate of damping or decoherence.  相似文献   

12.
In this work, we study the payoffs of quantum Samaritan’s dilemma played with the thermal entangled state of XXZ spin model in the presence of Dzyaloshinskii-Moriya (DM) interaction. We discuss the effect of anisotropy parameter, strength of DM interaction and temperature on quantum Samaritan’s dilemma. It is shown that although increasing DM interaction and anisotropy parameter generate entanglement, players payoffs are not simply decided by entanglement and depend on other game components such as strategy and payoff measurement. In general, Entanglement and Alice’s payoff evolve to a relatively stable value with anisotropy parameter, and develop to a fixed value with DM interaction strength, while Bob’s payoff changes in the reverse direction. It is noted that the augment of Alice’s payoff compensates for the loss of Bob’s payoff. For different strategies, payoffs have different changes with temperature. Our results and discussions can be analogously generalized to other 2 × 2 quantum static games in various spin models.  相似文献   

13.
We study the behaviour of the glued trees algorithm described by Childs et al. in [1] under decoherence. We consider a discrete time reformulation of the continuous time quantum walk protocol and apply a phase damping channel to the coin state, investigating the effect of such a mechanism on the probability of the walker appearing on the target vertex of the graph. We pay particular attention to any potential advantage coming from the use of weak decoherence for the spreading of the walk across the glued trees graph.  相似文献   

14.
We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entangled optical states.Indeed,the decoherence effect is exploited positively here to generate such kind of quantum channels.Next,the amplitude damping and the entanglement amount of these produced channels are enhanced thereafter by a probabilistic quasi amplification process using again a 50 : 50 beam splitter.  相似文献   

15.
It is known that the inevitable interaction of the entangled qubits with their environments may result in the degradation of quantum correlation.We study the decoherence of two remote qubits under general local single-and two-sided amplitude-damping channel(ADC).By using concurrence,quantum discord and Clauser-Horne-ShimonyHolt(CHSH)inequality,we find that the relation between the residual quantum correlations and the initial ones are different.Recently,Wang et al.[Int.J.Theor.Phys.54(2015)5]showed that there exist a set of partially entangled states that are more robust than maximally entangled states in terms of the residual quantum correlation measured by concurrence,fully entangled fraction and quantum discord,respectively.Here we find that both in single-and two-sided ADC,only the evolution of CHSH inequality with the initial parameter is proportional to that of the initial nonlocality.That means the initial state with maximally nonlocality will retain its role in the evolution.It implies that the evolution of nonlocality may reveal the characteristics of quantum state better.Furthermore,we discuss the evolutions of the three different quantum measurements with the initial parameter under generalized amplitude damping channel(GADC)and find that they are all proportional to that of the initial state.  相似文献   

16.
We study one-way quantum deficit of two-qubit X states systematically from analytical derivations. An effective approach to compute one-way quantum deficit of two-qubit X states has been provided. Analytical results are presented as for detailed examples. Moreover, we demonstrate the decoherence of one-way quantum deficit under phase damping channel.  相似文献   

17.

We investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under two typical categories of noise: phase damping channel and depolarizing channel in detail. It shows that, owing to the dissipation, the entropic uncertainty monotonically increases and tends to a steady-state value with the increase of the decoherence in phase damping channel, and can always keep its lower bound during the evolution when the initial state is the maximum entangled state. The larger correlated dephasing rate is favorable for suppressing the amount of entropic uncertainty. In contrast, under the depolarizing channel with memory, the entropic uncertainty always fails to reach its lower bound. Besides, the entropic uncertainty and its lower bound firstly increase with time, then turn down and tend to a steady-state value. The larger correlated decay rate has no benefit to improve the accuracy of quantum measurement. Our investigations might offer an insight into the dynamics of the measurement uncertainty under decoherence, and be important to quantum precision measurement in open systems.

  相似文献   

18.
Huan Yang 《中国物理 B》2022,31(9):90302-090302
The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities. Here, we characterize the quantum steering, Bell nonlocality, and nonlocal advantage of quantum coherence (NAQC) of quantum dot system suffering nonunital and unital channels. The results reveal that quantum steering, Bell nonlocality, and NAQC can display the traits of dissipation, enhancement, and freezing. One can achieve the detections of quantum steering, Bell nonlocality, and NAQC of quantum dot system in different situations. Among these quantum nonlocalities, NAQC is the most fragile, and it is most easily influenced by different system parameters. Furthermore, considering quantum dot system coupling with amplitude damping channel and phase damping channel, these quantum nonlocalities degenerate with the enlargement of the channel parameters $t$ and $\varGamma$. Remarkably, measurement reversal can effectively control and enhance quantum steering, Bell nonlocality, and NAQC of quantum dot system suffering from decoherence, especially in the scenarios of the amplitude damping channel and strong operation strength.  相似文献   

19.
Zhou HJ  Liu SD  Cheng MT  Wang QQ  Li YY  Xue QK 《Optics letters》2005,30(23):3213-3215
The decoherence of Rabi oscillation (RO) caused by biexciton, population leakage to the wetting layer (WL), and Auger capture in semiconductor quantum dots is theoretically analyzed with multilevel optical Bloch equations. The corresponding effects on the quality factor of RO are also discussed. We have found that the biexciton effect is relatively trifling, as the pulse duration is longer than 5 ps. The population leakage to the WL leads to a decrease of the RO average even though the damping rate is similar to that observed in the experiment. Auger capture in quantum dots results in RO damping that is consistent with the experimental data, which implies that Auger capture is an important decoherence process in quantum dots.  相似文献   

20.
徐酉阳  周飞  陈亮  谢艺  薛鹏  冯芒 《中国物理 B》2012,21(4):40304-040304
Quantum walk is different from random walk in reversibility and interference. Observation of the reduced re- versibility in a realistic quantum walk is of scientific interest in understanding the unique quantum behavior. We propose an idea to experimentally investigate the decoherence-induced irreversibility of quantum walks with trapped ions in phase space via the average fidelity decay. By introducing two controllable decoherence sources, i.e., the phase damping channel (i.e., dephasing) and the high temperature amplitude reservoir (i.e., dissipation), in the intervals between the steps of quantum walk, we find that the high temperature amplitude reservoir shows more detrimental effects than the phase damping channel on quantum walks. Our study also shows that the average fidelity decay works better than the position variance for characterizing the transition from quantum walks to random walk. Experimental feasibility to monitor the irreversibility is justified using currently available techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号