首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under considering the next-nearest-neighbor interaction, quantum breathers in one-dimensional anisotropy ferromagnetic chains are theortically studied. By introducing the Dyson-Maleev transformation for spin operators, a map to a Heisenberg ferromagnetic spin lattice into an extended Bose–Hubbard model can be established. In the case of a small number of bosons, by means of the numerical diagonalization technique, the energy spectrum of the corresponding extended Bose–Hubbard model containing two bosons is calculated. When the strength of the single-ion anisotropy is enough large, a isolated single band appears. This isolated single band corresponds to two-boson bound state, which is the simplest quantum breather state. It is shown that the introduction of the next-nearest-neighbor interaction will lead to interesting band structures. In the case of a large number of bosons, by applying the time-dependent Hartree approximation, quantum breather states for the system is constructed. In this case, the effect of the next-nearest-neighbor interaction on quantum breathers is also analyzed.  相似文献   

2.
We have investigated spin singlet Mott states of spin-one bosons with antiferromagnetic interactions. These spin singlet states do not break rotational symmetry and exhibit remarkably different macroscopic properties compared with nematic Mott states of spin-one bosons. We demonstrate that the dynamics of spin singlet Mott states is fully characterized by even- or odd-class quantum dimer models. The difference between spin singlet Mott states for even and odd numbers of atoms per site can be attributed to a selection rule in the low energy sectors of on-site Hilbert spaces; alternatively, it can also be attributed to an effect of Berry’s phases on bosonic Mott states. We also discuss evidence for spin singlet quantum condensate of spin-one atoms. Our main finding is that in a projected spin singlet Hilbert space, the low energy physics of spin-one bosons is equivalent to that of a Bose-Hubbard model for spinless bosons interacting via Ising gauge fields. The other major finding is spin-charge separation in some one-dimensional Mott states. We propose charge-e spin singlet superfluid for an odd number of atoms per lattice site and charge-2e spin singlet superfluid for an even number of atoms per lattice site in one-dimensional lattices. All discussions in this article are limited to integer numbers of bosons per site.  相似文献   

3.
We present a comparison of quantum and “semiclassical” trajectories of coherent states that correspond to classical breather solutions of finite discrete nonlinear Schrödinger (DNLS) lattices. The main goal is to explain earlier numerical observations of recurrent return to the vicinity of initial coherent states corresponding to stable breathers that are also spatially localized. This effect can be considered as a quantum manifestation of classical spatial localization. We show that these phenomena are encoded in a simple expression for the distance between the quantum and semiclassical states that involves the basic frequencies of the classical and quantum systems, as well as the breather amplitude and quantum spectral decomposition of the system. A corollary is that recurrence phenomena are robust under perturbation of the initial conditions for stable breathers.  相似文献   

4.
We show that the current method of determining superfluidity in optical lattices based on a visibly sharp bosonic momentum distribution n(k) can be misleading, for even a normal Bose gas can have a similarly sharp n(k). We show that superfluidity in a homogeneous system can be detected from the so-called visibility (v) of n(k)--that v must be 1 within O(N(-2/3)), where N is the number of bosons. We also show that the T=0 visibility of trapped lattice bosons is far higher than what is obtained in some current experiments, suggesting strong temperature effects and that these states can be normal. These normal states allow one to explore the physics in the quantum critical region.  相似文献   

5.
The dynamics of repulsive bosons condensed in an optical lattice is effectively described by the Bose-Hubbard model. The classical limit of this model, reproduces the dynamics of Bose-Einstein condensates, in a periodic potential, and in the superfluid regime. Such dynamics is governed by a discrete nonlinear Schrödinger equation. Several papers, addressing the study of the discrete nonlinear Schrödinger dynamics, have predicted the spontaneous generation of (classical) breathers in coupled condensates. In the present contribute, we shall focus on localized solutions (quantum breathers) of the full Bose-Hubbard model. We will show that solutions exponentially localized in space and periodic in time exist also in absence of randomness. Thus, this kind of states, reproduce a novel quantum localization phenomenon due to the interplay between bounded energy spectrum and non-linearity.  相似文献   

6.
《Physics Reports》1998,295(5):181-264
Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurrence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices — quantum breathers.Finally we will formulate a new conceptual approach capable of predicting whether discrete breathers exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.  相似文献   

7.
By using a full quantum approach based on the time-dependent Hartree approximation and the semidiscrete multiple-scale method, we study quantum nonlinear excitations in a one-dimensional ferromagnetic chain with octupole-dipole interaction and on-site uniaxial anisotropy. We find that quantum solitons and breathers can exist in the ferromagnetic chain, and analyze existence conditions of these excitations. Since the system states corresponding to quantum breathers are stationary states, we can get the energy level formula of such quantum breathers.  相似文献   

8.
We consider insulating states of spin-one bosons in optical lattices in the presence of a weak magnetic field. For the states with more than one atom per lattice site we find a series of quantum phase transitions between states with fixed magnetization and a canted nematic phase. In the presence of a global confining potential, this unusual phase diagram leads to several novel phenomena, including the formation of magnetization plateaus. We discuss how these effects can be observed using spatially resolved spin polarization measurements.  相似文献   

9.
A duality between the properties of many spinor bosons on a regular lattice and those of a single particle on a weighted graph reveals that a quantum particle can traverse an infinite hierarchy of networks with perfect probability in polynomial time, even as the number of nodes increases exponentially. The one-dimensional "quantum wire" and the hypercube are special cases in this construction, where the number of spin degrees of freedom is equal to one and the number of particles, respectively. An implementation of a near-perfect quantum state transfer across a weighted parallelepiped with ultracold atoms in optical lattices is discussed.  相似文献   

10.
We study number of spin I states for bosons in this paper. We extend Talmi's recursion formulas for number of states with given spin I to boson systems, and we prove empirical formulas for five bosons by using these recursions. We give number of states with given spin I and isospin F for three and four bosons by using sum rules of six-j and nine-j symbols. We also present formulas of states with given spin I and given F-spin for three and four single-l bosons.  相似文献   

11.
Yi S  Li T  Sun CP 《Physical review letters》2007,98(26):260405
We investigate the quantum phases of polarized dipolar bosons loaded into a two-dimensional square and three-dimensional cubic optical lattices. We show that the long-range and anisotropic nature of the dipole-dipole interaction induces a rich variety of quantum phases, including the supersolid and striped supersolid phases in two-dimensional lattices, and the layered supersolid phase in three-dimensional lattices.  相似文献   

12.
We present a theoretical study of linear wave scattering in one-dimensional nonlinear lattices by intrinsic spatially localized dynamic excitations or discrete breathers. These states appear in various nonlinear systems and present a time-periodic localized scattering potential for plane waves. We consider the case of elastic one-channel scattering, when the frequencies of incoming and transmitted waves coincide, but the breather provides with additional spatially localized ac channels whose presence may lead to various interference patterns. The dependence of the transmission coefficient on the wave number q and the breather frequency Omega(b) is studied for different types of breathers: acoustic and optical breathers, and rotobreathers. We identify several typical scattering setups where the internal time dependence of the breather is of crucial importance for the observed transmission properties.  相似文献   

13.
We investigate self-localisation of dipolar Bose-Einstein condensates (BECs) in 1D nonlinear lattices via boundary dissipation in a dissipative nonlinear Schrödinger model (DNLS) with nearest-neighbour dipole-dipole interactions (DDI). By including both contact interactions and DDIs, we observe that a rich variety of self-localised modes (i.e., single discrete breathers, moving breathers and multi-breathers) can exist in dipolar systems in optical lattices. Furthermore, we find that DDIs can suppress the formation of single discrete breathers and support the formation of multi-breathers. Our results show that including both contact interactions and DDIs may provide a way to experimentally obtain stationary multi-breathers in optical lattices via boundary dissipations.  相似文献   

14.
In this paper I review our experiments on visualization of discrete breathers (intrinsic localized modes) in nonlinear lattices made of Josephson junctions. Properties of Josephson junctions and arrays made of such junctions are discussed in the Introduction. The visualization technique based on low temperature laser scanning microscopy (LSM) is described in detail. Images of discrete breathers in Josephson junction arrays of various geometries are presented. Possible further experiments that can be done using LSM technique are envisioned.  相似文献   

15.
Nonlinear classical Hamiltonian lattices exhibit generic solutions — discrete breathers. They are time-periodic and (typically exponentially) localized in space. The lattices have discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. We will introduce the concept of these localized excitations and review their basic properties including dynamical and structural stability. We then focus on advances in the theory of discrete breathers in three directions — scattering of waves by these excitations, persistence of discrete breathers in long transient processes and thermal equilibrium, and their quantization. The second part of this review is devoted to a detailed discussion of recent experimental observations and studies of discrete breathers, including theoretical modelling of these experimental situations on the basis of the general theory of discrete breathers. In particular we will focus on their detection in Josephson junction networks, arrays of coupled nonlinear optical waveguides, Bose–Einstein condensates loaded on optical lattices, antiferromagnetic layered structures, PtCl based single crystals and driven micromechanical cantilever arrays.  相似文献   

16.
We prove a theorem that shows the degeneracy of many-body states for particles in a periodic lattice and under a uniform magnetic field depends on the total particle number and the flux filling ratio. Noninteracting fermions and weakly interacting bosons are given as two examples. For the latter case, the phenomenon can also be physically understood in terms of destructive quantum interference of multiple symmetry-related tunneling paths between classical energy minima, which is reminiscent of the spin-parity effect discovered in magnetic molecular clusters. We also show that the quantum ground state of a mesoscopic number of bosons in this system is not a simple mean-field state but a fragmented state even for very weak interactions.  相似文献   

17.
The bound states of four bosons in the quantum β-Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined with the number state method. We find that the relative magnitude of anharmonic coefficient has a significant effect on forming localized energy in the model, and the wave number plays an important role in forming different bound states. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.  相似文献   

18.
Nonlinear dynamic states with a fine internal structure, such as breathers, “breather lattices,” kinks, kink-antikink bound states, and their spatially periodic generalizations have been constructed in terms of a modified Korteweg-de Vries equation for a system of magnetostatic waves in a ferromagnet-insulator-metal structure. Specific features of the nucleation, interaction, and transformation of these states have been studied in layered magnetic structures.  相似文献   

19.
Discrete breathers are generic solutions for the dynamics of nonlinearly coupled oscillators. We show that discrete breathers can be observed in low-dimensional and high-dimensional lattices by exploring the sinusoidally coupled pendulum. Loss of stability of the breather solution is studied. We also find the existence of discrete breather in lattices with parameter mismatches. Breather phase synchronization is exhibited for the coupled chaotic oscillators.  相似文献   

20.
程留永  郑黎娜  吴瑞祥  王洪福  张寿 《中国物理 B》2022,31(2):20305-020305
We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics(QED)lattice.Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators.And we can achieve different types of quantum state transfer without adjusting the number of lattices.Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer.This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号