首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distributed dislocation technique is applied to determine the behavior of a cracked concrete matrix containing an inclusion. The analysis of cracked concrete in the presence of inclusions such as steel expansions is a practical problem that needs special attention. The solution to the problem of interaction of an edge dislocation with a circular inclusion having circumferentially inhomogeneously imperfect interface is available in the literature. This analytical solution is used in the distributed dislocation technique to obtain the stress intensity factor for the cracked concrete in the presence of inclusion. The interface of the matrix and the inclusion is assumed inhomogeneously imperfect and the stress intensity factor is determined for the cracked concrete for a case of two identical cracks on diametrically opposite sides of the inclusion. Consideration of this general inhomogeneously imperfect interface is the contribution of this paper. The variation of the inhomogeneity parameters is studied and presented. Additionally, the general assumption for the interface is simplified to the special case of perfectly bonded interface. The observations for the perfect interface are coincident with the previously reported results.  相似文献   

2.
Two-dimensional antiplane time-harmonic Green’s functions for a circular inhomogeneity with an imperfect interface are derived. Here the linear spring model with vanishing thickness is employed to characterize the imperfect interface. Explicit expressions for the displacement and the stress fields induced by time-harmonic antiplane line forces located both in the unbounded matrix and in the circular inhomogeneity are presented. When the circular frequency approaches zero, our results reduce to those for the static case. Numerical results are presented to show the influence of the frequency and the imperfection of the interface on the stress and displacement fields.  相似文献   

3.
The electroelastic coupling interaction between multiple screw dislocations and a circular inclusion with an imperfect interface in a piezoelectric solid is investigated. The appointed screw dislocation may be located either outside or inside the inclusion and is subjected to a line charge and a line force at the core. The analytic solutions of electroelastic fields are obtained by means of the complex-variable method. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces exerted on the piezoelectric screw dislocations are derived. The motion and the equilibrium position of the appointed screw dislocation near the circular interface are discussed for variable parameters (interface imperfection, material electroelastic mismatch, and dislocation position), and the influence of the nearby parallel screw dislocations is also considered. It is found that the piezoelectric screw dislocation is always attracted by the electromechanical imperfect interface. When the interface imperfection is strong, the impact of material electroelastic mismatch on the image force and the equilibrium position of the dislocation becomes weak. Additionally, the effect of the nearby dislocations on the mobility of the appointed dislocation is very important.  相似文献   

4.
Moving antiplane shear crack in hexagonal piezoelectric crystals   总被引:1,自引:0,他引:1  
Closed-form solutions are obtained and discussed for the stress and electric displacement fields around a loaded Griffith-type antiplane shear strip crack moving in hexagonal piezoelectric crystals. Representative numerical results are presented for ZnO and PZT-4.  相似文献   

5.
Dislocation mobility and stability in nanocrystals and electronic materials are influenced by the material composition and interface conditions. Its mobility and stability then affect the mechanical behaviors of the composites. In this paper, we first address, in detail, the problem of a screw dislocation located in an annular coating layer which is imperfectly bonded to the inner circular inhomogeneity and to the outer unbounded matrix. Both the inhomogeneity-coating interface and coating-matrix interface are modeled by a linear spring with vanishing thickness to account for the possible damage occurring on the interface. An analytic solution in series form is derived by means of complex variable method, with all the unknown constants being determined explicitly. The solution is then applied to the study of the dislocation mobility and stability due to its interaction with the two imperfect interfaces. The most interesting finding is that when the middle coating layer is more compliant than both the inner inhomogeneity and the outer unbounded matrix and when the interface rigidity parameters for the two imperfect interfaces are greater than certain values, one stable and two unstable equilibrium positions can exist for the dislocation. Furthermore, under certain conditions an equilibrium position, which can be either stable or unstable (i.e., a saddle point), can exist, which has never been observed in previous studies. Results for a screw dislocation interacting with two parallel straight imperfect interfaces are also presented as the limiting case where the radius of the inner inhomogeneity approaches infinity while the thickness of the coating layer is fixed.  相似文献   

6.
This research presents an analytical study of the interaction problem of an edge dislocation with a circular inclusion with a circumferentially inhomogeneously imperfect interface. The interface, which is modeled as a spring (interphase) layer with vanishing thickness, is characterized by that in which there is a displacement jump across the interface in the same direction as the corresponding tractions, and the same degree of imperfection is realized in both the normal and tangential directions. Furthermore, the interface parameter is nonuniform along the interface. In order to arrive at an elementary form solution, we introduce a conformal mapping function. Then the stress field as well as the Peach–Koehler force acting on the edge dislocation can be obtained from the derived complex potentials. Calculations demonstrate that the nonuniform interface parameter has a significant influence on the stress field.  相似文献   

7.
The plane elastic problem of a circular inhomogeneity with an imperfect interface of spring-constant-type is reduced to the solution of a Somigliana dislocation problem, when the solution for the corresponding problem with a perfect interface is known. The Burger's vector of the Somigliana dislocation is determined so that its components satisfy two interfacial conditions involving the traction components of the corresponding problem with a perfect interface. Employing complex variables, a two-phase potential solution to the Somigliana dislocation inhomogeneity problem is developed for a general form of the Burger's vector. Detailed results are reported for a uniform eigenstrain in the inhomogeneity, and for a remote uniform heat flow in the matrix. In the latter case, the inhomogeneity behaves as a void, when it begins to slide.  相似文献   

8.
The paper addresses the problem of calculating the local fields and effective transport properties and longitudinal shear stiffness of elliptic fiber composite with imperfect interface. The Rayleigh type representative unit cell approach has been used. The micro geometry of composite is modeled by a periodic structure with a unit cell containing multiple elliptic inclusions. The developed method combines the superposition principle, the technique of complex potentials and certain new results in the theory of special functions. An appropriate choice of the potentials provides reducing the boundary-value problem to an ordinary, well-posed set of linear algebraic equations. The exact finite form expression of the effective stiffness tensor has been obtained by analytical averaging the local gradient and flux fields. The convergence of solution has been verified and the parametric study of the model has been performed. The obtained accurate, statistically meaningful results illustrate a substantial effect of imperfect interface on the effective behavior of composite.  相似文献   

9.
Summary A generalized and unified treatment is presented for the antiplane problem of an elastic elliptical inclusion undergoing uniform eigenstrains and subjected to arbitrary loading in the surrounding matrix. The general solution to the problem is obtained through the use of conformal mapping technique and Laurent series expansion of the associated complex potentials. The resulting elastic fields are derived explicitly in both transformed and physical planes for the inclusion and the surrounding matrix. These relations are universal in the sense of being independent of any particular loading as well as the geometry of the matrix. The complete field solutions are provided for an elliptical inclusion under uniform loading at inifinity, and for a screw dislocation interacting with the elastic elliptical inclusion.  相似文献   

10.
11.
12.
An interface crack in a bimaterial piezoelectric space under the action of antiplane mechanical and in-plane electric loadings is analyzed. One zone of the crack faces is electrically conductive while the other part is electrically permeable. All electro-mechanical values are presented using sectionally-analytic vector-functions and a combined Dirichlet-Riemann boundary value problem is formulated. An exact analytical solution of this problem is obtained. Simple analytical expressions for the shear stress, electric field and also for mechanical displacement jump of the crack faces are derived. These values are also presented graphically along the corresponding parts of the material interface. Singular points of the shear stress, electric field and electric displacement jump are found. Their intensity factors are determined as well. Intensity factors variations with respect to the external electric field and different ratios between the electrically conductive and electrically permeable crack face zones are also demonstrated.  相似文献   

13.
The propagation of non-linear elastic anti-plane shear waves in a unidirectional fibre-reinforced composite material is studied. A model of structural non-linearity is considered, for which the non-linear behaviour of the composite solid is caused by imperfect bonding at the “fibre–matrix” interface. A macroscopic wave equation accounting for the effects of non-linearity and dispersion is derived using the higher-order asymptotic homogenisation method. Explicit analytical solutions for stationary non-linear strain waves are obtained. This type of non-linearity has a crucial influence on the wave propagation mode: for soft non-linearity, localised shock (kink) waves are developed, while for hard non-linearity localised bell-shaped waves appear. Numerical results are presented and the areas of practical applicability of linear and non-linear, long- and short-wave approaches are discussed.  相似文献   

14.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

15.
The interaction between a screw dislocation and a circular inhomogeneity in gradient elasticity is investigated. The screw dislocation is located inside either the inhomogeneity or the matrix. By using the Fourier transform method, closed analytical solutions are obtained when the inhomogeneity and the matrix have the same gradient coefficient. The explicit expressions of image forces exerted on screw dislocations are derived. The motion of the appointed screw dislocation and its equilibrium positions are discussed. The results show that the classical singularity is eliminated. Especially, for the case of a tiny inhomogeneity, the relation of dislocations and inhomogeneities become quite different. The screw dislocation may be attracted by the stiff inhomogeneity and repelled by the soft inhomogeneity when it tends to the interface. So there is an unstable equilibrium position when a dislocation tends to a tiny stiff inhomogeneity and there is a stable equilibrium position when a dislocation tends to a tiny soft inhomogeneity.  相似文献   

16.
Hao-Peng Song  Cun-Fa Gao 《Meccanica》2012,47(5):1097-1102
The interaction between a screw dislocation and an elastic semi-cylindrical inhomogeneity abutting on a rigid half-plane is investigated. Utilizing the image dislocations method, the closed form solutions of the stress fields in the matrix and the inhomogeneity region are derived. The image force acting on the dislocation is also calculated. The results were used to study the interaction between a screw dislocation and a rigid wedge inhomogeneity with an elastic circular inhomogeneity at the tip by means of conformal mapping. The results show that an unstable equilibrium point of the dislocation near the semi-cylindrical inhomogeneity is found when the inhomogeneity is softer than the matrix. Moreover, the force on the dislocation is strongly affected by the position of the dislocation and the shear modulus of the semi-circular inhomogeneity. Positive screw dislocations can reduce the SIF of the rigid wedge inhomogeneity (shielding effect) only when it located in the lower half-plane. The shielding effect increases with the increase of the shear modulu of both the matrix and the inhomogeneity and increases with the increase of the wedge angle. The shielding effect (or anti-shielding effect) reaches the maximum when the dislocation tends to the wedge inhomogeneity interface.  相似文献   

17.
18.
An exact analysis is carried out to study interaction of a time-harmonic plane-progressive sound field with a multi-layered elastic hollow sphere made of spherically isotropic materials with interlaminar bonding imperfections. A modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics, ultimately leading to calculation of a global transfer matrix. A linear spring model is adopted to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. The solution is first used to correlate the perturbation in the material elastic constants of an evacuated and water submerged steel (isotropic) spherical shell to the sensitivity of resonances appearing in the backscattered amplitude spectrum. The backscattering form function, in addition to the acoustic radiation force acting on selected transversely isotropic spherical shells with distinct degrees of material anisotropy, is subsequently calculated and discussed. An illustrative numerical example is given for a multi-layered hollow sphere with two distinct interlaminar interface conditions (i.e., perfectly and imperfectly bonded layers). Limiting cases are considered and fair agreements with solutions available in the literature are established.  相似文献   

19.
本文重点研究螺型住错偶极子和圆形夹杂界面刚性线的弹性干涉效应。利用复变函数方法,得到了该问题的一般解;此外还求出了只含一条界面刚性线时的封闭解答,得到了刚性线尖端的应力强度因子以及作用在螺型位错偶板子中心的像力和像力偶矩。研究结果表明:位错偶板子对应力强度因子具有很强的屏蔽或反屏蔽效应;软夹杂吸引位错偶极子,而刚性线排斥位错偶板子,在一定条件下,位错偶极子在刚性线附近出现一个平衡位置;当刚性线的长度争材料剪切模量比达到临界值时,可以改变偶极子和界面之间的干涉机理;刚性线长度对位错偶极子中心像力偶矩也有很大的影响。  相似文献   

20.
The interaction of a screw dislocation with a circular inhomogeneity near the free surface is discussed in this paper. By using the complex potential and conformal mapping technique, an explicit series solution is obtained. Then, the solution is cast into a new expression to separate the interaction effects between the dislocation, inhomogeneity, and free surface. The new expression is not only convenient to reveal the coupling interaction effects, but also helpful to improve the convergence of the solution. As an application of the new expression, a simple approximate formula is presented with high accuracy. Finally, the full-field interaction energy and image force are evaluated and studied graphically. It is found that when the screw dislocation, inhomogeneity, and free surface are close to each other, their interaction effects strongly and intricately couple in the near field. In the case of a soft inhomogeneity or a hole, there is an unstable equilibrium point of the screw dislocation between the inhomogeneity and free surface, whereas in the case of a hard or rigid inhomogeneity, there is an unstable equilibrium point on the opposite side of the inhomogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号