首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The quantized energy levels of electrons in supported nanometer-size Au clusters have been resolved at room temperature using field emission techniques. By studying the time dependence of the electron emission current from an individual supported cluster, information about the structural stability of the cluster can also be obtained. Studies show abrupt jumps between different emission rates that are revisited as time progresses. This phenomenon can be attributed to a rearrangement of the cluster structure and/or orientation on the substrate and provides new evidence of multiple ‘isomeric’ structures for small clusters of metallic atoms.  相似文献   

2.
The number of degrees of freedom-dependent stability of ions and ion-neutral non-covalent complexes under collision-induced dissociation (CID) conditions was studied in a quadrupole ion trap mass spectrometer. It was found that the stability of ions as probed by energy-variable CID has a linear dependence on the total number of degrees of freedom for the ions (or ion-neutral complexes) with the same (or nearly the same) bonding energy. The slope of such a stability vs number of degrees of freedom dependence correlates with the binding energy. Proton-bound amine dimers display the lowest slope as they have weak bonds. Breaking covalent bonds will result in much greater slopes. In addition to the binding energy, the vibrational frequencies of the ion also affect the stability vs number of degrees of freedom behavior. Studying such a dependence of the CID stability in a system paves the way for direct relative binding energy comparisons. The application of this approach is demonstrated by testing the relative heme affinities of anti-malaria drugs and related compounds.  相似文献   

3.
What is the role of electrochemistry in supramolecular chemistry? On one hand, it provides information on energy and kinetics that is not available with spectroscopic and mass spectrometric techniques; on the other, it can be used to alter the electronic states and thus the interactions between molecules, resulting in new compounds and materials. A typical cyclic voltammogram of the complex shown is depicted on the right; only the first three reductions are presented, although a total of six electrons can be transferred to the bipyridine units sequentially (E in V vs. ferrocene/ferrocenium).  相似文献   

4.
Different techniques of analytical TEM were used to investigate Fe/Cr multilayers. These multilayers show a dependence of their electrical resistance as a function of the magnetic field. This effect called giant magnetoresistance can be utilized for example in magnetic recording heads. Typical dimensions of the single layer thickness are in the nanometer region. Therefore the microstructure of this material has been investigated by transmission electron microscopy (TEM). To get additional analytical information energy dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS) can be used. Received: 15 July 1997 / Revised: 5 February 1998 / Accepted: 6 February 1998  相似文献   

5.
6.
A new method for the direct calculation of resonance parameters is presented. It is based upon searching for poles of the scattering matrix at complex energies. This search is expedited by the use of analytic derivatives of the scattering matrix with respect to the total energy. This procedure is applied initially to a single channel problem, but is generalizable to more complicated systems. Using the most accurate available potential energy data, we calculate resonance parameters for all of the physically important quasibound states of the ground electronic state of the hydrogen molecule. Corrections to the Born-Oppenheimer potential are included and assessed. The new method has no difficulty locating resonances with widths greater than about 1×10–7 cm–1. It is easier to find narrow resonances by monitoring the dependence of the imaginary part of the reactance matrix on the real part of a complex energy than to monitor the dependence of the eigenphase sum on energy at real energies.  相似文献   

7.
8.
Abstract

Our recent paper [Phys. Rev. A, 60, 2853 (1999)] on the field dependence of the energy of a molecule in an arbitrary magnetic field is extended here by results which can be expressed solely in terms of the total kinetic energy of the electron liquid of a molecule or an atom in a homogeneous magnetic field.  相似文献   

9.
Protein structure prediction is a long‐standing problem in molecular biology. Due to lack of an accurate energy function, it is often difficult to know whether the sampling algorithm or the energy function is the most important factor for failure of locating near‐native conformations of proteins. This article examines the size dependence of sampling effectiveness by using a perfect “energy function”: the root‐mean‐squared distance from the target native structure. Using protein targets up to 460 residues from critical assessment of structure prediction techniques (CASP11, 2014), we show that the accuracy of near native structures sampled is relatively independent of protein sizes but strongly depends on the errors of predicted torsion angles. Even with 40% out‐of‐range angle prediction, 2 Å or less near‐native conformation can be sampled. The result supports that the poor energy function is one of the bottlenecks of structure prediction and predicted torsion angles are useful for overcoming the bottleneck by restricting the sampling space in the absence of a perfect energy function. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration.  相似文献   

11.
The divide-and-conquer (DC) method, which is one of the linear-scaling methods avoiding explicit diagonalization of the Fock matrix, has been applied mainly to pure density functional theory (DFT) or semiempirical molecular orbital calculations so far. The present study applies the DC method to such calculations including the Hartree-Fock (HF) exchange terms as the HF and hybrid HF/DFT. Reliability of the DC-HF and DC-hybrid HF/DFT is found to be strongly dependent on the cut-off radius, which defines the localization region in the DC formalism. This dependence on the cut-off radius is assessed from various points of view: that is, total energy, energy components, local energies, and density of states. Additionally, to accelerate the self-consistent field convergence in DC calculations, a new convergence technique is proposed.  相似文献   

12.
13.
Two-electron non-adiabatic redox-mediated tunneling through a symmetric electrochemical contact with a bridge molecule having one electron energy level participating in tunneling is considered under ambient conditions. It is shown that the current/overpotential dependence in this system can disclose two distinct or overlapping clear-cut maxima depending on the value of the effective Coulomb repulsion energy. This new effect is due to the opening of the channel for tunneling of second electron with the variation of the electrode potential. The system manifests also a rectification effect in the current/bias voltage curve which depends on the value of the effective Coulomb repulsion energy.  相似文献   

14.
Fragmentation of alkylsilanes, in particular trimethylethylsilane, were studied by mass-analysed ion kinetic energy (MIKE) and collision-induced decomposition MIKE techniques. Ab initio and semi-empirical molecular orbital calculations were applied to explain the main fragmentation processes. These calculations indicate that more than one minimum can be located on the potential energy surface of a given ground-state molecule ion. These differ from each other mainly in the length of the silicon–carbon bonds. The structures can be adequately described as complexes of a trivalent silyl ion and an alkyl radical. Each of these complexes fragments by the loss of the weakly bound alkyl radical. The calculated energetics of these reactions were found to be in good agreement with the observed energy dependence of the mass spectra.  相似文献   

15.
Solar thermal fuels (STFs) have been particularly concerned as sustainable future energy due to their impressive ability to store solar energy in chemical bonds and controllably release thermal energy. However, currently studied STFs mainly focus on molecule-based materials with high photochemical activity, toxicity, and compromised features, which greatly restricts their applications in practical scenarios of solar energy utilization. Herein, we present a novel erythritol-based composite phase change material (PCM) as a new type of STFs with an outstanding capability to store solar energy as latent heat in its stable supercooling state and release thermal energy as needed. This composite PCM with stored thermal energy can be maintained stably at room temperature and subsequently release latent heat as high as 224.9 J/g during the crystallization process triggered by thermal stimuli. Remarkably, solar energy can be converted into latent heat stored in the composite PCM over months. Through mechanical stimulations, the released latent heat can increase the temperature of the composite up to 91 °C. This work presents a new concept of using spatiotemporal storage and release of latent heat in PCMs for solar energy utilization, making it a potential candidate as STFs for developing future clean energy techniques.  相似文献   

16.
The thermal behaviour of the complexes formed in situ between the aromatic diamine 1,10-phenanthroline and the Co(II) and Ni(II) ions intercalated between the layers of γ-zirconium phosphate was studied by simultaneous TG/DSC techniques. The obtained materials show similar thermal behaviour: after a multi-step dehydration process they showed an oxidative decomposition in only one step. The kinetic study of the decomposition process was performed using both the model-free methods of Ozawa-Flynn-Wall and Kissinger. The former method provides a negligible dependence of activation energy on the degree of reaction α for both materials. Activation energies derived by the Kissinger method show a good agreement with the mean values derived by the Ozawa-Flynn-Wall method. The Arrhenius rate constants determined using also the pre-exponential factor values demonstrate that their thermal stability can be considered comparable, within the experimental uncertainty. Finally, a reliable method was applied to determine the model function from the best fit between the numerical dependence of the integral function g(α) vs. α and several theoretical model dependencies reported in literature for the most commonly used models. A Mampel first-order reaction model was selected to describe the thermal decomposition in both the materials studied.  相似文献   

17.
Major deficiencies of mass spectrometry for characterizing isomeric molecules, and of collisionally activated dissociation for characterizing isomeric ions, can be alleviated by complementary information from new techniques of neutraiization-reionization (NR) mass spectrometry. Mass data can be obtained from most fragments of the original species, irrespective of their ability to retain the charge; dissociation of fast neutrals prepared from isomeric ions can involve novel reaction pathways and can minimize competing isomerization reactions; isomeric neutrals undergoing similar dissociations can be differentiated by forming them with different internal energies; reionization of the neutral products to negative as well as positive ions can provide increased selectivity; and structural information on the resulting ions can be derived using MS/MS/MS, Dissociation by novel non-isomerization pathways can also be effected by a second addition (or subtraction) of an electron to produce an unstable ion of opposite charge. Special techniques can yield neutralized products in favorable dissociative states by collisional activation, by using neutralization targets of selected ionization energy, or through Franck-Condon factors. Optimum excitation of the neutral is important, as this should be high enough to minimize rearrangement, to maximize the differences in the dissociation pathways of isomers, and to minimize the further dissociation of the characteristic primary products of the neutral. NR experiments can, thus, also provide information on the energy surfaces for unimolecular dissociations of neutrals that are difficult to study by conventional techniques. Dissociations of the neutrals can be differentiated from those occurring after reionization by separate collisional activation of the neutrals, by changing the ionization energy of the neutralization agent, or by reionization to ions of opposite charge.  相似文献   

18.
Boron solids exhibit a fascinating geometric and electronic structure. The properties of alpha-rhombohedral boron can be significantly changed by the addition of other atomic constituents. It is found that Pauling's bond valence principle plays an important role in designing boron-rich semiconductors. We have designed the novel boron-rich phases B12N2X (X = Zn, Cd, Be) with the boron carbide type structure by combining Pauling's bond valence principle with first-principles techniques. Their energy gaps, bulk moduli, microhardnesses, and total energies have been calculated. The results show that they are new superhard materials and potential semiconductors. It has been elucidated why B12N2 is metallic but B12N2Be is a semiconductor. This should open up new potential areas for predicting novel boron-rich compounds for industrial applications.  相似文献   

19.
Measurements of adsorbate-derived peaks in angle-resolved photoemission energy distribution may provide a useful method for the study of bulk/surface diffusion of contaminants in metals. Energy distributions for c(2 × 2) sulfur on Ni(100) at 50° (±4°) collection angle along (001) for nω = 21.2 eV (HeI) are characterized by a single sulfur-derived peak at 4.5 eV binding energy, believed to be due to sulfur in the four-fold hollow surface site determined by LEED. Further sulfur dosage or excessive heating results in the appearance of a second peak in the spectrum, at 1.25 eV higher binding energy, while maintaining a sharp c(2 × 2) LEED structure. The new binding configuration indicated by the second sulfur peak is interpreted as the penetration of sulfur into the substrate. This interpretation is supported by further studies of the dependence of the higher binding energy peak on temperature and dosage. This method of observing bulk-surface diffusion should be applicable to many other adsorbate/substrate systems, as long as the adsorbate-derived peak can be observed and identified.  相似文献   

20.
The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation for the exchange-correlation energy functional has two nonempirical constructions, based on satisfaction of universal exact constraints on the hole density or on the energy. We show here that, by identifying one possible free parameter in exchange and a second in correlation, we can continue to satisfy these constraints while diminishing the gradient dependence almost to zero (i.e., almost recovering the local spin density approximation or LSDA). This points out the important role played by the Perdew-Wang 1991 nonempirical hole construction in shaping PBE and later constructions. Only the undiminished PBE is good for atoms and molecules, for reasons we present, but a somewhat diminished PBE could be useful for solids; in particular, the surface energies of solids could be improved. Even for atoms and molecules, a strongly diminished PBE works well when combined with a scaled-down self-interaction correction (although perhaps not significantly better than LSDA). This shows that the undiminished gradient dependence of PBE and related functionals works somewhat like a scaled-down self-interaction correction to LSDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号