首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
In the first part of this paper a numerical strategy is developed for the numerical simulation of the coextrusion process. Coextrusion consists of extruding many polymers in the same die in order to combine their respective properties. The die is generally flat and quite large and consequently a two-dimensional approximation is sufficient. The main difficulty is to accurately predict the interfaces between the different layers of polymers. A finite element method based on a pseudoconcentration function is developed to calculate these fluid interfaces. Numerical results are presented for the coextrusion of up to five fluids. In the second part of the paper the above strategy is slightly modified to simulate the film-casting process. In this case a polymer is stretched (with a draw velocity UL) at the exit of the die in order to produce a very thin layer of polymer that is cooled in contact with a chill roll. Only one polymer-air interface has to be computed. The draw ratio is defined as Dr = UL/U , where U is the mean velocity of the polymer at the exit of the die. As the draw ratio is increased, instabilities appear and numerical results put in evidence the draw resonance phenomenon.  相似文献   

2.
The problem of appropriate location of the sensors for identification of ingot – mould thermal resistance during continuous casting of metals is the subject of the paper. Analysed problem belongs to the group of inverse problems. The present work shows also the method of identification of unknown thermal resistance using the temperature measurements at the number of sensors located in the wall of the mould. The influence of the location of the sensors on the results of identification is analysed. The best location of the sensors results from the sensitivity analysis for the steady-state inverse heat conduction problem. Validation of the proposed inverse method is realized by comparison of the results taken from solution of inverse and direct problems. Several numerical examples are presented and analysed.  相似文献   

3.
2—D问题条形传递函数方法与有限元法的分区耦合   总被引:1,自引:0,他引:1  
将条形传递函数法(SDTFM)和有限元法(FEM)结合起来,给出了一种求解弹性2-D问题的新方法。该方法通过把二维解区域解成多个子区域,利用SDTFM建立矩形子区域(超级单元)基于边界点的刚度矩阵和结点力矢量,而对于其它几何形状的子区域则有限元法建立刚度矩阵和结些点力矢量,从而将SDTFM推广到任意几何形状的平面区域,克服了SDTFM只能用于规则几何平面区域的不足,与单纯用有限元法求解相比较,本文  相似文献   

4.
The marker surface method and the adaptive grid refinement technique have been applied to the three‐dimensional (3‐D) finite element analysis of the filling stage in the die‐casting process. Especially, the marker surface plugging technique and the marker surface regeneration technique incorporated in the marker surface method have been proposed for the efficient analysis of 3‐D practical problems. Through the marker surface plugging technique, new parts of marker surface are effective lycreated in order to eliminate the gaps between the parts of marker surface or between the edge of marker surface and cavity wall. By using the marker surface regeneration technique, the marker surface including a great number of marker elements is recreated on the basis of its original shape in order to decrease the number of marker elements and computational time. A3‐D example used as the benchmark test and a typical industrial problem of the die‐casting process have been analysed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement technique has been verified. It has been shown that the proposed techniques incorporated in the marker surface method and the adaptive grid refinement technique can be effectively applied to general industrial problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
本文采用大变形弹塑性有限元法对金属板条在柱形模中的压弯成形过程进行了数值模拟,并与实验进行了比较。首先给出了纠正的拉格朗日有限元公式和基于弹塑性乘法分解的超弹性塑性本构关系。对接触摩擦问题的处理采用了罚函数法。通过对数值结果的分析得出了一些对弯曲工艺的设计有指导价值的结论。  相似文献   

6.
根据柱壳理论,构造了一种柱壳曲条,本文结合柱壳曲条和平壳条元求解高层筒体结构的整体稳定及二阶位移。采用三次H erm ite插值函数模拟条元横截面的翘曲位移变化,能较好地反映筒体受力“剪切滞后”效应;采用一族能较好地逼近弯剪型变形曲线的正交多项式作基函数来描述位移沿竖向变化。用最小势能原理建立稳定及二阶位移分析方程。该方法适用于任意平面形状的高层建筑筒体结构及剪力墙结构的稳定及二阶位移分析。与其它方法相比,该方法具有精度高、通用性强、计算量小等优点。  相似文献   

7.
The generalized differential quadrature (GDQ) method was used to determine the inter-laminar stresses and deflections in a laminated rectangular anisotropy plate under thermal bending involving the effect of shear deformation. We obtained the non-dimensional stresses and transverse center deflection in cross-ply and angle-ply anti-symmetric, anisotropic laminates subjected to thermal load with sinusoidal temperature distribution. We found that the shear deformation has significant effects on the stresses and deflections for laminated anisotropic plate with moderately side-to-thickness ratio under thermal load and bending state.  相似文献   

8.
The objective of this paper is to investigate sensitivity of the macrosegregation profiles in steel strips produced by the horizontal strip casting process to the major technological parameters controlling this process, such as the cooling rate and the casting speed. To perform this investigation, a mathematical model which accounts for fluid flow as well as for heat and solute transport is suggested. Extensive numerical simulations of the horizontal strip casting process for different cooling rates and different casting speeds are carried out. Received on 17 September 1998  相似文献   

9.
微电子元件制造过程中的应力分析   总被引:2,自引:0,他引:2  
本文分析了一个典型的微电子元件在创造过程中残余应力的分布和演化.与以往大多数类似的分析工作的不同之处在于,我们并不是对一个已成型的结构再回过头去仅仅分析其温度历史下相应的应力状态,而是追踪了该结构成型过程的各个方面,尤其是由于工艺过程中结构几何形状的变化而引起的应力重分布.采用的方法则是控制某些材料所对应的单元在某一特定的时刻以后才起作用,这种方法对于各种制造过程的分析非常有效.  相似文献   

10.
Coating process is an important step in the manufacturing of different products, such as paper, adhesive and magnetic tapes, photographic films, and many other. The tensioned web roll coating is one the several methods used by different industries. It relies on the elastohydrodynamic action between the fluid and the tensioned substrate for transferring and applying the liquid. The main advantage of this method is its ability to apply very thin liquid layers with less sensitivity to mechanical tolerance at relative small cost. Despite its industrial application, theoretical analysis and fundamental understanding of the process are limited. This work analyses this elastohydrodynamic action by solving the differential equations that govern the liquid flow, described by the Navier–Stokes equation, and the web deformation, modelled by the cylindrical shell approximation. The goal is to determine the operating conditions at which the process is two dimensional and defect free. The equations are discretized by the Galerkin/finite‐element method. The resulting non‐linear system of equations is solved by Newton's method coupled with pseudo‐arc‐length continuation in order to obtain solutions around turning points. The theoretical results are used to construct an operating window of the process that is in agreement with limited experimental data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Roll coating is distinguished by the use of one or more gaps between rotating cylinders to meter and apply a liquid layer to a substrate. Except at low speed, the two-dimensional film splitting flow that occurs in forward roll coating is unstable; a three-dimensional steady flow sets in, resulting in more or less regular stripes in the machine direction. For Newtonian liquids, the stability of the two-dimensional flow is determined by the competition of capillary and viscous forces: the onset of meniscus nonuniformity is marked by a critical value of the capillary number. Although most of the liquids coated industrially are non-Newtonian polymeric solutions and dispersions, most of the theoretical analyses of film splitting flows relied on the Newtonian model. Non-Newtonian behavior can drastically change the nature of the flow near the free surface; when minute amounts of flexible polymer are present, the onset of the three-dimensional instability occurs at much lower speeds than in the Newtonian case.Forward roll coating flow is analyzed here with two differential constitutive models, the Oldroyd-B and the FENE-P equations. The results show that the elastic stresses change the flow near the film splitting meniscus by reducing and eventually eliminating the recirculation present at low capillary number. When the recirculation disappears, the difference of the tangential and normal stresses (i.e., the hoop stress) at the free surface becomes positive and grows dramatically with fluid elasticity, which explains how viscoelasticity destabilizes the flow in terms of the analysis of Graham [M.D. Graham, Interfacial hoop stress and instability of viscoelastic free surface flows, Phys. Fluids 15 (2003) 1702–1710].  相似文献   

12.
In this paper, the film casting process has been simulated using a new model developed recently using the framework of multiple natural configurations to study crystallization in polymers (see Rao and Rajagopal Z. Angew. Math. Phys. 53 (2002) 265; Polym. Eng. Sci. 44(1) (2004) 123; Simulation of the film blowing process for semicrystalline polymers, in press, 2004). In the film casting process, the material starts out as a viscoelastic melt and undergoes deformation and cooling, resulting in a semi-crystalline solid. In order to model the complex changes taking place in the material and predict the behavior of the final solid it is important to use models that are capable of describing these changes. The model used here has been formulated within a general thermodynamic framework that is capable of describing dissipative processes. In addition it handles in a direct manner the change of symmetry in the material; it thus provides a good basis for studying the crystallization process in polymers. The polymer melt is modeled as a rate type viscoelastic fluid and the crystalline solid polymer is modeled as an anisotropic elastic solid. The initiation criterion, marking the onset of crystallization and equations governing the crystallization kinetics arise naturally in this setting in terms of the appropriate thermodynamic functions. The mixture region, wherein the material transitions from a melt to a semi-crystalline solid, is modeled as a mixture of a viscoelastic fluid and an elastic solid. This is in marked contrast to earlier approaches where in the simulation has been done assuming that the material was a viscous fluid and the transition to a solid like behavior is achieved by increasing the viscosity to a large value resulting in a highly viscous fluid and not an elastic solid. The results of our simulations compare well against experimental data available in literature. In addition to these quantitative comparisons have carried out parametric study to study the influence of the different parameters on the film casting process.  相似文献   

13.
We study the deformation of a crack between a soft elastomer and a rigid substrate with finite interfacial slippage. It is assumed that slippage occurs when the interfacial shear traction exceeds a threshold. This leads to a slip zone ahead of the crack tip where the shear traction is assumed to be equal to the constant threshold. We perform asymptotic analysis and determine closed-form solutions describing the near-tip crack opening displacement and the corresponding stress distributions. These solutions are consistent with numerical results based on finite element analysis. Our results reveal that slippage can significantly affect the deformation and stress fields near the tip of the interface crack. Specifically, depending on the direction of slippage, the crack opening profile may appear more blunted or sharpened than the parabola arising from for the case of zero interfacial shear traction or free slippage. The detailed crack opening profile is determined by the constant shear traction in the slip zone. More importantly, we find that the normal stress perpendicular to the interface can increase or decrease when slippage occurs, depending on the direction of slippage and the shear traction in the slip zone.  相似文献   

14.
The special case of a crack under mode III conditions was treated, lying parallel to the edges of an infinite strip with finite width and with the shear modulus varying exponentially perpendicular to the edges. By using Fourier transforms the problem was formulated in terms of a singular integral equation. It was numerically solved by representing the unknown dislocation density by a truncated series of Chebyshev polynomials leading to a linear system of equations. The stress intensity factor (SIF) results were discussed with respect to the influences of different geometric parameters and the strength of the non-homogeneity. It was indicated that the SIF increases with the increase of the crack length and decreases with the increase of the rigidity of the material in the vicinity of crack. The SIF of narrow strip is very sensitive to the change of the non-homogeneity parameter and its variation is complicated. With the increase of the non-homogeneity parameter, the stress intensity factor may increase, decrease or keep constant, which is mainly determined by the strip width and the relative crack location. If the crack is located at the midline of the strip or if the strip is wide, the stress intensity factor is not sensitive to the material non-homogeneity parameter.  相似文献   

15.
为研究边坡抛掷爆破振动波传播过程所诱发的地表质点振动情况,运用量纲分析理论构建考虑高程影响的振动峰值速度公式,在此基础上依据边坡抛掷爆破模型将炮孔药包划分为无数微元体进行积分运算,最终得到边坡抛掷爆破振动峰值速度公式。结果显示,同一地理环境和爆破工艺条件下,峰值速度主要由炸药性能、装药深度、测点与爆源间距以及爆破作用指数所决定。同时对某边坡爆破现场进行试验测振,将实测峰值速度数据分别代入萨氏公式、3个常用萨氏修正公式以及通过无量纲理论推导出的速度公式进行非线性回归运算,得到坡表面实测值与各峰值速度公式预测值之间平均误差分别为32%、34.25%、29.58%、39%和7%,坡体内实测值与各峰值速度公式预测值之间平均误差分别为27.63%、23.5%、16.88%、33.889%和13.25%。  相似文献   

16.
The efficient compound strip method is used to analyse the buckling of ring-stiffened cylindrical shells under hydrostatic pressure. The eccentricity of stiffeners is taken into account. Numerical examples are given to illustrate the efficiency and accuracy of this method.  相似文献   

17.
In this paper, we present a numerical model to simulate the lost foam casting process. We introduce this particular casting first in order to capture the different physical processes in play during a casting. We briefly comment on the possible physical and numerical models used to envisage the numerical simulation. Next we present a model which aims to solve ‘part of’ the complexities of the casting, together with a simple energy budget that enables us to obtain an equation for the velocity of the metal front advance. Once the physical model is established we develop a finite element method to solve the governing equations. The numerical and physical methodologies are then validated through the solution of a two‐ and a three‐dimensional example. Finally, we discuss briefly some possible improvements of the numerical model in order to capture more physical phenomena. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
提出一种求解波导结构频散特性的有限元特征频率法,该方法基于振动问题的特征频率计算理论,根据模态振型识别波数与模态类型,建立了相速度及群速度的求解方法。该方法可适用于任意波导结构的频散关系求解。首先分析满足收敛精度要求的最大网格单元尺寸与最小模型长度,并用该方法对简支板条结构的频散特性进行了计算。结果表明,有限元特征频率法适合求解波动频散关系,板条结构中模态受边界影响会产生同阶高次模态,边界尺寸决定新模态的截止频率;随频率的增大,同阶低次反对称模态会趋于一致;对称模态能量分布受边界影响较大。本文也为板条类结构导波实验结果的分析提供了理论依据。  相似文献   

19.
A method is introduced by which the complete state of residual stress in an elastic body may be inferred from a limited set of experimental measurements. Two techniques for carrying out this reconstruction using finite element analysis are compared and it is shown that for exact reconstruction of the stress field via this method, the stress field must be measured over all eigenstrain-containing regions of the object. The effects of error and incompleteness in the measured part of the stress field on the subsequent analysis are investigated in a series of numerical experiments using synthetic measurement data based on the NeT TG1 round-robin weld specimen. It is hence shown that accurate residual stress field reconstruction is possible using measurement data of a quality achievable using current experimental techniques.  相似文献   

20.
钢筋混凝土板壳材料非线性分析的有限条法   总被引:4,自引:0,他引:4  
本文发展了变厚度任意配筋的钢筋混凝土板壳问题中考虑材料非线性分析的有限条法。文中建立了沿厚度方向作分层离散的三维蜕化二次厚壳条,而在计算上,沿壳条跨度方向采用Simpson积分技术可以方便地处理该方向的任意配筋并给出了满足精度要求的选取Simpson积分点数的表达式。文中提出的“拟刚度矩阵”法大大简化了非线性有限条法的求解过程。给出两个数值算例表明了理论方法的有效性及其精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号