首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured the resistivity of textured Bi1.84Pb0.4Sr2Ca2Cu3Oy silver-clamped thick films as a function of temperature, current density ranging from 10 to 1×103 A/cm2 and magnetic field up to 0.3 T. We find that the effective activation energy Ue follows Ue(T,J,H)=U0(1−T/Tp)mln(Jc0/J)H with m=1.75 for Hab-plane and 2.5 for Hc-axis and =0.76 for Hab and 0.97 for Hc, for the current density regime above 100 A/cm2, where Tp is a function of applied magnetic field and current density. This result suggests the effective activation energy Ue be correlated with the temperature, current density and magnetic field. The possible dissipative mechanisms responsible for the temperature, current density and magnetic field dependence of the effective activation energy are discussed.  相似文献   

2.
《中国物理 B》2021,30(6):67504-067504
The magnetostriction, magnetization, and spin reorientation properties in Pr(Ga_xFe_(1-x))_(1.9) alloys have been investigated by high-precision x-ray diffraction(XRD) step scanning, magnetization, and Mo¨ssbauer spectra measurements. Ga substitution reduces the magnetostriction(λ_(||)) with magnetic field H ≥ 8 kOe(1 Oe = 1.33322×10~2 Pa), but it also increases the λ|| value when H ≤ 8 kOe at 5 K. Spin-reorientations(SR) are observed in all the alloys investigated, as determined by the step scanned XRD, Mo¨ssbauer spectra, and the abnormal temperature dependence of magnetization. An increase of the spin reorientation temperature(T_(SR)) due to Ga substitution is found in the phase diagram, which is different from the decrease one in many R(T_x Fe_(1-x))_(1.9)(T = Co, Al, Mn) alloys. The present work provides a method to control the easy magnetization direction(EMD) or T_(SR) for developing an anisotropic compensation system.  相似文献   

3.
Spin–lattice relaxation times T1 and T1d as well as NMR second moment were employed to study the molecular dynamics of riboflavin (vitamin B2) in the temperature range 55–350 K. The broad and flat T1 minimum observed at low temperatures is attributed to the motion of two nonequivalent methyl groups. The motion of the methyl groups is interpreted in terms of Haupt's theory, which takes into account the tunneling assisted relaxation. An additional mechanism of relaxation in the high temperature region is provided by the motion of a proton in one of the hydroxyl groups. The Davidson–Cole distribution of correlation times for this motion is assumed.  相似文献   

4.
The spin-lattice relaxation times T1 of 1H and 29Si spins in talc have been measured at room temperature with and without magic-angle spinning (MAS) of the sample. Paramagnetic impurities work as relaxation centers. 1H T1 depends on the spinning rate, whereas 29Si T1 is independent of the spinning rate. These facts demonstrate that spin diffusion plays an important role in 1H relaxation but not in 29Si relaxation. 29Si spins relax through dipole-dipole interactions with electron spins directly, which mechanism is not affected by spinning. The relaxation rates have been analyzed theoretically.  相似文献   

5.
The interaction of a soluble Melanin Free Acid (MFA) from Sepia melanin with Mn2+ ions is investigated by measuring the proton water relaxation rates. The similarity between MFA and the parent melanin is assessed by means of their high resolution 13C cross polarization magic angle spinning NMR spectra. The observed marked increase in longitudinal proton relaxation rates and the characteristic 1/T1 NMRD profile are associated to the formation of a macromolecular metal complex. The presence of similar paramagnetic species is expected to cause the high contrast shown by melanotic tissues in MRI.  相似文献   

6.
Magnetization σ vs. temperature T was measured from 80 to 700 K in polycrystalline DyFe3 in a magnetic field H = 10 kOe. From σ = f(T), the Curie temperature was determined. Also, σ was measured vs. H from 0 to 70 kOe at 4.2 K. Magnetization at saturation σ0 at 4.2 K and the magnetic moment of DyFe3 were also determined. First observations of domain structure in DyFe3 are reported. The mean domain with is determined in its dependence on the grain size . The magnetocrystalline anisotropy constant of polycrystalline DyFe3 is determined as K1 = -1.2×107 erg/cm3.  相似文献   

7.
The 63Cu NMR Knight shift K and spin-lattice relaxation rate 1/T1 have been measured to study the thiospinel superconductor Cu1.5Rh1.5S4 from a microscopic viewpoint. K is negative and has a weak dependence on temperature, and the hyperfine coupling constant Hhfd is estimated to be −52.4 kOe/μB. 1/T1 is proportional to the temperature in the normal state. In the superconducting state, 1/T1 takes a coherence peak just below Tc, and decreases exponentially well below Tc, from whose temperature dependence the superconducting energy gap has been proved to be close to 2Δ = 3.52kBTc given by the BCS theory.  相似文献   

8.
We explore the impact of the Sandage−Loeb (SL) test on the precision of cosmological constraints for f(T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the “redshift desert” of 2z5. To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f(T) gravity theories. Two typical f(T) models are considered, the power-law model f(T)PL and the exponential-form model f(T)EXP. The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm and the Hubble constant H0 in other cosmological observations. For the considered f(T) models, a 30-year observation of the SL test can improve the constraint precision of Ωm and H0 enormously but cannot effectively improve the constraint precision of the model parameters.  相似文献   

9.
《Physica A》1995,220(3-4):585-598
An antiferromagnetic equivalent-neighbour Heisenberg interaction Hi between impurity spins is added to the reduced s-d Hamiltonian Hr previously introduced by simplifying the Kondo s-d exchange Hamiltonian HK. Asymptotic mean-field theory is developed for Hr + Hi, in the presence and absence of external magnetic field, and applied to (La1−xCex)Al2 alloys. Specific heat ci(T) and zero-field susceptibility χi(0,T) curves for (La1−xCex)Al2 are depicted. The coupling constants of Hr + Hi and conduction bandwidth are adjusted so that Tc temperatures for x = 0.2, 0.1 are equal to the experimental values. ci(T) exhibits a jump at Tc and is decreasing for T < Tc. χi(0,T) has a first order pole at Tc which corresponds to the maximum of experimental susceptibility and χi(0,0) > 0. These results improve those obtained earlier on the grounds of Hr theory.  相似文献   

10.
We have measured the thermoelectric power, S, and the irreversibility field, Hirr, of the superconducting samples of (Hg,Tl)2Ba2Can−1CunOy (n=2–5). S values for the (Hg,Tl)-22(n−1)n above their Tc's drastically increase with increasing n. Judging from the S values at room temperature, the n=2 and 3 samples are located in the overdoped region, the n=4 is in the almost optimally doped and the n=5 is in the underdoped region. Hirr values for the n=4 and 5 samples are higher than those for the as-synthesized and annealed n=3 samples. It is considered that the enhancement in Hirr is due not only to the increase of hole concentration but to the increase in the number of CuO2 sheets.  相似文献   

11.
The importance of spin density [N(H)] and spin-lattice (T1) and spin-spin (T2) relaxation in the characterization of tissue by nuclear magnetic resonance (NMR) is clearly recognized. This work considers which optimized pulse sequences provide the best tissue discrimination between a given pair of tissues. The effects of tissue spin density and machine-imposed minimum rephasing echo times (TEMIN) for achieving maximum signal tissue contrast are discussed. A long TEMIN sacrifices T1-dependent contrast in saturation recovery (SR) and inversion recovery (IR) pulse sequences so that spin-echo (SE) becomes the optimum sequence to provide tissue contrast, due to T2 relaxation. Pulse sequences providing superior performance may be selected based on spin density and T1 and T2 ratios for a given pair of tissues. Selection of the preferred pulse sequence and interpulse delay times to produce maximum tissue contrast is strongly dependent on knowledge of tissue spin densities as well as T1 and T2 characteristics. As the spin density ratio increases, IR replaces SR as the preferred sequence and SE replaces IR and SR as the pulse sequence providing superior contrast. To select the optimal pulse sequence and interpulse delay times, an accurate knowledge of tissue spin density, T1 and T2 must be known for each tissue.  相似文献   

12.
We have used electron spin resonance measurements to derive the temperature and frequency dependences of the field-induced magnetization [M(T, f)] and anisotropy field [Han (T)] in a number of amorphous alloys belonging to the series (FepNi1−p)75P16B6Al3. In re-entrant (p > pc, the critical concentration for ferromagnetism) alloys at hi gh frequencies (f = 35 GHz, field ≈ 12 kOe) M reduces as T3/2 at high T and as T below ≈ 40 K, the deviation from T3/2 becoming more marked as pp+c. For p close to pc, lowering the frequency first causes the T term to increase and ultimately ( ≈ 4 GHz) changes the variation of M with T to that discovered previously for concentrated spin glasses, namely M is constant at low T and drops linearly at high temperatures. For the re-entrants, the results are interpreted on the basis of a model which invokes an energy gap in the spin-wave spectrum, introduces a non-zero density of states of the gap energy and takes into consideration a low-q cut-off in the spin-wave integral in thelow-T (T) regime.In the concentrated spin glasses [M (0) - M (T)]/ M (0) is well represented by the function [exp (Δ / T) - 1]-1, where Δ has values close to the corresponding Curie-Weiss temperatures θp but much larger than the respective spin glass transition temperatures TSG. The temperature dependence of Han is largely given by the function (1 - T/T*), where T* is equal to the zero-field freezing temperature for the re-entrants and TSG for the spin glasses, respectively.  相似文献   

13.
The effects of cerebral ischemia in rat brain were monitored as a function of time using proton MR imaging. Spinspin relaxation time (T2), proton density, and magnetization transfer contrast (MTC) were measured by MR imaging at various time intervals during a 1-week period following the induction of ischemic damage. Ischemic injury was characterized by a maximization of both T2 value and MTC appearance at 24 hr postischemic injury. These changes were accompanied by a gradual increase in MR observable water density over the first few days of ischemia. A reduction in the magnetization exchange rate between “free” and “bound” water protons as measured by MTC imaging is at least partially responsible for the elevation in T2 values observed during ischemia, and may accompany breakdown of cellular structure.  相似文献   

14.
吴雪科  李会东  王占辉  冯灏  周雨林 《中国物理 B》2017,26(6):65201-065201
Using the trans-neut module of the BOUT++ code, we study how the fueling penetration depth of supersonic molecular beam injection(SMBI) is affected by plasma density and temperature profiles. The plasma densities and temperatures in L-mode are initialized to be a set of linear profiles with different core plasma densities and temperatures. The plasma profiles are relaxed to a set of steady states with different core plasma densities or temperatures. For a fixed gradient, the steady profiles are characterized by the core plasma density and temperature. The SMBI is investigated based on the final steady profiles with different core plasma densities or temperatures. The simulated results suggest that the SMB injection will be blocked by dense core plasma and high-temperature plasma. Once the core plasma density is set to be N_(i0)= 1.4N_0(N_0= 1 × 10~(19)m~(-3)) it produces a deeper penetration depth. When N_(i0) is increased from 1.4N_0 to 3.9N_0 at intervals of 0.8N_0, keeping a constant core temperature of T_(e0)= 725 eV at the radial position of ψ = 0.65, the penetration depth gradually decreases. Meanwhile, when the density is fixed at N_(i0)= 1.4N_0 and the core plasma temperature T_(e0) is set to 365 eV,the penetration depth increases. The penetration depth decreases as T_(e0) is increased from 365 eV to 2759 eV. Sufficiently large N_(i0) or T_(e0) causes most of the injected molecules to stay in the scrape-off-layer(SOL) region, lowering the fueling efficiency.  相似文献   

15.
The present communication reports the experimental values of NMR spin-lattice relaxation time (T1) and dielectric relaxation time (τ) of piperidine, pyrrole, pyridine, diethylamine, triethylamine and pyrrolidine. The values of activation energy (ΔEA) obtained using dielectric relaxation time, have been correlated with calculated values of ΔEA obtained using Arrhenius equation of NMR relaxation time (T1) for pyridine, diethylamine and pyrrole. Authors have also established a correlation between the experimental values of NMR spin-relaxation time (T1) with its calculated values obtained using different equations of dielectric relaxation time (τ).  相似文献   

16.
《中国物理 B》2021,30(9):97501-097501
Among the layered two-dimensional ferromagnetic materials(2 D FMs),due to a relatively high T_C,the van der Waals(vdW) Fe_3 GeTe_2(FGT) crystal is of great importance for investigating its distinct magnetic properties.Here,we have carried out static and dynamic magnetization measurements of the FGT crystal with a Curie temperature TC ≈ 204 K.The M-H hysteresis loops with in-plane and out-of-plane orientations show that FGT has a strong perpendicular magnetic anisotropy with the easy axis along its c-axis.Moreover,we have calculated the uniaxial magnetic anisotropy constant(K_1)from the SQUID measurements.The dynamic magnetic properties of FGT have been probed by utilizing the high sensitivity electron-spin-resonance(ESR) spectrometer at cryogenic temperatures.Based on an approximation of single magnetic domain mode,the K_1 and the effective damping constant(α_(eff)) have also been determined from the out-of-plane angular dependence of ferromagnetic resonance(FMR) spectra obtained at the temperature range of 185 K to T_C.We have found large magnetic damping with the effective damping constant α_(eff) ~ 0.58 along with a broad linewidth(ΔH_(pp) 1000 Oe at 9.48 GHz,H ‖ c-axis).Our results provide useful dynamics information for the development of FGT-based spintronic devices.  相似文献   

17.
D.-S. Choi  R. Gomer 《Surface science》1990,230(1-3):277-282
The diffusion of W on a (211) plane of a W field emitter has been re-examined by means of the fluctuation autocorrelation method. Diffusion along channels yielded E = 16.8 ± 0.5 kcal, D0 = (3 ± 1) × 10−5 cm2 s−1. For diffusion across channels E =6.6 kcal, D0 = 4 × 10−9cm2 s−1 at T < 752 K, and E = 24 kcal, D0 = 5 × 10−4 cm2 s−1 at T > 752 K. The results for diffusion along channels yield E and D0 values intermediate between recent results by Wang and Ehrlich [Surf. Sci. 206 (1988) 451] using field ion microscopy (E = 19 kcal, D0 = 7.7 × 10−3 cm2 s−1) and Tringides and Gomer [J. Chem. Phys. 84 (1986) 4049], using the same method as the present work but a larger slit (E = 13.3 kcal, D0 = 7 × 10−7 cm2 s−1). The results for cross channel diffus good agreement with those of Tringides and Gomer below 752 K, where these authors stopped. The new high temperature results suggest that the channel wall exchange mechanism postulated by Tringides and Gomer for cross channel diffusion at low T gives way to diffusion by climbing over the channel walls with higher E but also higher D0 above 752 K. Possible reasons for the discrepancies between these three sets of results and the absence of cross channel diffusion in the work of Wang and Ehrlich are briefly discussed.  相似文献   

18.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time T = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

19.
Wideline 1H FID and relaxation measurements of a relatively simple motionally heterogeneous system, the triblock copolymer styrene–butadiene–styrene, have been performed in a temperature range between the polystyrene and polybutadiene glass transition temperatures. The two FID and the two spin lattice relaxation time in the rotating frame (T1ρ) components found at each temperature have been correlated by means of a two-dimensional approach. It is shown that this approach allows dynamic information, not accessible simply by interpreting proton T1 and T1ρ data, to be revealed. In the case examined, the correlation found could be confirmed by high-resolution 1H T1ρ-selective 13C Cross Polarization experiments.  相似文献   

20.
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have been applied to visualize physiological phenomena in plants and agricultural crops. Imaging sequences that result in contrast of a combination of parameters (e.g., proton density, ) cannot be used for a correct and unique interpretation of the results. In this study multiecho imaging together with monoexponential T2 decay fitting was applied to determine reliable proton density and T2 distributions over a mushroom. This was done at three magnetic field strengths (9.4, 4.7, and 0.47 T) because susceptibility inhomogeneities were suspected to influence the T2 relaxation times negatively, and because the inflences of susceptibility inhomogeneities increase with a rise in magnetic field strength. Electron microscopy was used to understand the different T2's for the various tissue types in mushrooms. Large influences of the tissue ultrastructure on the observed T2 relaxation times were found and explained. Based on the results, it is concluded that imaging mushrooms at low fields (around or below 0.47T) and short echo times has strong advantages over its high-field counterpart, especially with respect to quantitative imaging of the water balance of mushrooms. These conclusions indicate general validity whenever NMR imaging contrast is influenced by susceptibility inhomogeneities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号