首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we continue the project of generalizing tilting theory to the category of contravariant functors $\mathrm{Mod}(\mathcal{C})$ , from a skeletally small preadditive category $\mathcal{C}$ to the category of abelian groups, initiated in [15]. We introduce the notion of a generalized tilting category $\mathcal{T}$ , and we concentrate here on extending Happel’s theorem to $\mathrm{Mod}(\mathcal{C})$ ; more specifically, we prove that there is an equivalence of triangulated categories $\mathcal{D}^{b}( \mathrm{Mod}(\mathcal{C}))\cong \mathcal{D}^{b}(\mathrm{Mod}(\mathcal{T}))$ . We then add some restrictions on our category $\mathcal{C}$ , in order to obtain a version of Happel’s theorem for the categories of finitely presented functors. We end the paper proving that some of the theorems for artin algebras, relating tilting with contravariantly finite categories proved in Auslander and Reiten (Adv Math 12(3):306–366, 1974; Adv Math 86(1):111–151, 1991), can be extended to the category of finitely presented functors $\mathrm{mod}(\mathcal{C})$ , with $\mathcal{C}$ a dualizing variety.  相似文献   

2.
Triebel (J Approx Theory 35:275–297, 1982; 52:162–203, 1988) investigated the boundary values of the harmonic functions in spaces of the Triebel–Lizorkin type ${\mathcal F^{\alpha,q}_{p}}$ on ${\mathbb{R}^{n+1}_+}$ by finding an characterization of the homogeneous Triebel–Lizorkin space ${{\bf \dot{F}}^{\alpha,q}_p}$ via its harmonic extension, where ${0 < p < \infty, 0 < q \leq \infty}$ , and ${\alpha < {\rm min}\{-n/p, -n/q\}}$ . In this article, we extend Triebel’s result to α < 0 and ${0 < p, q \leq \infty}$ by using a discrete version of reproducing formula and discretizing the norms in both ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf{\dot{F}}}^{\alpha,q}_p}$ . Furthermore, for α < 0 and ${1 < p,q \leq \infty}$ , the mapping from harmonic functions in ${\mathcal{F}^{\alpha,q}_{p}}$ to their boundary values forms a topological isomorphism between ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf \dot{F}}^{\alpha,q}_p}$ .  相似文献   

3.
Let $ \mathcal{A} $ be a nonempty family of functions from $ \mathbb{R} $ to $ \mathbb{R} $ . A function $ f:\mathbb{R}\to \mathbb{R} $ is said to be strongly countably $ \mathcal{A} $ -function if there is a sequence (f n ) of functions from $ \mathcal{A} $ such that $ \mathrm{Gr}(f)\subset {\cup_n}\mathrm{Gr}\left( {{f_n}} \right) $ (Gr(f) denotes the graph of f). If $ \mathcal{A} $ is the family of all continuous functions, the strongly countable $ \mathcal{A} $ -functions are called strongly countably continuous and were investigated in [Z. Grande and A. Fatz-Grupka, On countably continuous functions, Tatra Mt. Math. Publ., 28:57–63, 2004], [G. Horbaczewska, On strongly countably continuous functions, Tatra Mt. Math. Publ., 42:81–86, 2009], and [T.A. Natkaniec, On additive countably continuous functions, Publ. Math., 79(1–2):1–6, 2011]. In this article, we prove that the families $ \mathcal{A}\left( \mathbb{R} \right) $ of all strongly countably $ \mathcal{A} $ -functions are closed with respect to some operations in dependence of analogous properties of the families $ \mathcal{A} $ , and, in particular, we show some properties of strongly countably differentiable functions, strongly countably approximately continuous functions, and strongly countably quasi-continuous functions.  相似文献   

4.
Let $\mathfrak{g}$ be a complex semisimple Lie algebra, $\mathfrak{b}$ a Borel subalgebra, and $\mathfrak{h}\subset\mathfrak{b}$ a Cartan subalgebra. Let V be a finite dimensional simple $U(\mathfrak{g})$ module. Based on a principal s-triple (e,h,f) and following work of Kostant, Brylinski (J Amer Math Soc 2(3):517–533, 1989) defined a filtration $\mathcal{F}_e$ for all weight subspaces V μ of V and calculated the dimensions of the graded subspaces for μ dominant. In Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) these dimensions were calculated for all μ. Let δM(0) be the finite dual of the Verma module of highest weight 0. It identifies with the global functions on a Weyl group translate of the open Bruhat cell and so inherits a natural degree filtration. On the other hand, up to an appropriate shift of weights, there is a unique $U(\mathfrak{b})$ module embedding of V into δM(0) and so the degree filtration induces a further filtration $\mathcal{F}$ on each weight subspace V μ . A casual reading of Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) might lead one to believe that $\mathcal{F}$ and $\mathcal{F}_e$ coincide. However this is quite false. Rather one should view $\mathcal{F}_e$ as coming from a left action of $U(\mathfrak{n})$ and then there is a second (Brylinski-Kostant) filtration $\mathcal{F}'_e$ coming from a right action. It is $\mathcal{F}'_e$ which may coincide with $\mathcal{F}$ . In this paper the above claim is made precise. First it is noted that $\mathcal{F}$ is itself not canonical, but depends on a choice of variables. Then it is shown that a particular choice can be made to ensure that $\mathcal{F}=\mathcal{F}'_e$ . An explicit form for the unique left $U(\mathfrak{b})$ module embedding $V\hookrightarrow\delta M(0)$ is given using the right action of $U(\mathfrak{n})$ . This is used to give a purely algebraic proof of Brylinski’s main result in Brylinski (J Amer Math Soc 2(3):517–533, 1989) which is much simpler than Joseph et al. (J Amer Math Soc 13(4):945–970, 2000). It is noted that the dimensions of the graded subspaces of $\rm{gr}_{\mathcal{F}_e} V_{\!\mu}$ and $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ can be very different. Their interrelation may involve the Kashiwara involution. Indeed a combinatorial formula for multiplicities in tensor products involving crystal bases and the Kashiwara involution is recovered. Though the dimensions for the graded subspaces of $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ are determined by polynomial degree, their values remain unknown.  相似文献   

5.
Let ${\mathcal{F}}$ be a family of connected graphs. A graph G is said to be ${\mathcal{F}}$ -free if G is H-free for every graph H in ${\mathcal{F}}$ . We study the problem of characterizing the families of graphs ${\mathcal{F}}$ such that every large enough connected ${\mathcal{F}}$ -free graph of even order has a perfect matching. This problems was previously studied in Plummer and Saito (J Graph Theory 50(1):1–12, 2005), Fujita et al. (J Combin Theory Ser B 96(3):315–324, 2006) and Ota et al. (J Graph Theory, 67(3):250–259, 2011), where the authors were able to characterize such graph families ${\mathcal{F}}$ restricted to the cases ${|\mathcal{F}|\leq 1, |\mathcal{F}| \leq 2}$ and ${|\mathcal{F}| \leq 3}$ , respectively. In this paper, we complete the characterization of all the families that satisfy the above mentioned property. Additionally, we show the families that one gets when adding the condition ${|\mathcal{F}| \leq k}$ for some k ≥ 4.  相似文献   

6.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

7.
In his thesis, Weisinger (Thesis, 1977) developed a newform theory for elliptic modular Eisenstein series. This newform theory for Eisenstein series was later extended to the Hilbert modular setting by Wiles (Ann. Math. 123(3):407–456, 1986). In this paper, we extend the theory of newforms for Hilbert modular Eisenstein series. In particular, we provide a strong multiplicity-one theorem in which we prove that Hilbert Eisenstein newforms are uniquely determined by their Hecke eigenvalues for any set of primes having Dirichlet density greater than $\frac{1}{2}$ . Additionally, we provide a number of applications of this newform theory. Let denote the space of Hilbert modular Eisenstein series of parallel weight k≥3, level $\mathcal{N}$ and Hecke character Ψ over a totally real field K. For any prime $\mathfrak{q}$ dividing $\mathcal{N}$ , we define an operator $C_{\mathfrak{q}}$ generalizing the Hecke operator $T_{\mathfrak{q}}$ and prove a multiplicity-one theorem for with respect to the algebra generated by the Hecke operators $T_{\mathfrak{p}}$ ( $\mathfrak{p}\nmid\mathcal{N}$ ) and the operators $C_{\mathfrak{q}}$ ( $\mathfrak{q}\mid\mathcal{N}$ ). We conclude by examining the behavior of Hilbert Eisenstein newforms under twists by Hecke characters, proving a number of results having a flavor similar to those of Atkin and Li (Invent. Math. 48(3):221–243, 1978).  相似文献   

8.
Let ${\mathcal{A}}$ be a collection of n linear hyperplanes in ${\mathbb{k}^\ell}$ , where ${\mathbb{k}}$ is an algebraically closed field. The Orlik-Terao algebra of ${\mathcal{A}}$ is the subalgebra ${{\rm R}(\mathcal{A})}$ of the rational functions generated by reciprocals of linear forms vanishing on hyperplanes of ${\mathcal{A}}$ . It determines an irreducible subvariety ${Y (\mathcal{A})}$ of ${\mathbb{P}^{n-1}}$ . We show that a flat X of ${\mathcal{A}}$ is modular if and only if ${{\rm R}(\mathcal{A})}$ is a split extension of the Orlik-Terao algebra of the subarrangement ${\mathcal{A}_X}$ . This provides another refinement of Stanley’s modular factorization theorem [34] and a new characterization of modularity, similar in spirit to the fibration theorem of [27]. We deduce that if ${\mathcal{A}}$ is supersolvable, then its Orlik-Terao algebra is Koszul. In certain cases, the algebra is also a complete intersection, and we characterize when this happens.  相似文献   

9.
We analyse sequences of discs conformally immersed in $ \mathbb{R }^ n$ with energy $ \int _{ D} |A_k |^ 2 \le \gamma _n$ , where $ \gamma _n = 8\pi $ if $ n=3$ and $ \gamma _n = 4 \pi $ when $n\ge 4$ . We show that if such sequences do not weakly converge to a conformal immersion, then by a sequence of dilations we obtain a complete minimal surface with bounded total curvature, either Enneper’s minimal surface if $ n=3$ or Chen’s minimal graph if $ n \ge 4$ . In the papers, (Kuwert and Li, Comm Anal Geom 20(2), 313–340, 2012; Rivière, Adv Calculus Variations 6(1), 1–31, 2013) it was shown that if a sequence of immersed tori diverges in moduli space then $\liminf _ {k\rightarrow \infty } \mathcal W ( f_k )\ge 8\pi $ . We apply the above analysis to show that in $ \mathbb{R }^3$ if the sequence diverges so that $ \lim _{ k \rightarrow \infty } \mathcal W (f_k) =8\pi $ then there exists a sequence of Möbius transforms $ \sigma _{k}$ such that $ \sigma _k\circ f _k$ converges weakly to a catenoid.  相似文献   

10.
Let $\mathcal{R }$ be a prime ring of characteristic different from $2, \mathcal{Q }_r$ the right Martindale quotient ring of $\mathcal{R }, \mathcal{C }$ the extended centroid of $\mathcal{R }, \mathcal{I }$ a nonzero left ideal of $\mathcal{R }, F$ a nonzero generalized skew derivation of $\mathcal{R }$ with associated automorphism $\alpha $ , and $n,k \ge 1$ be fixed integers. If $[F(r^n),r^n]_k=0$ for all $r \in \mathcal{I }$ , then there exists $\lambda \in \mathcal{C }$ such that $F(x)=\lambda x$ , for all $x\in \mathcal{I }$ . More precisely one of the following holds: (1) $\alpha $ is an $X$ -inner automorphism of $\mathcal{R }$ and there exist $b,c \in \mathcal{Q }_r$ and $q$ invertible element of $\mathcal{Q }_r$ , such that $F(x)=bx-qxq^{-1}c$ , for all $x\in \mathcal{Q }_r$ . Moreover there exists $\gamma \in \mathcal{C }$ such that $\mathcal{I }(q^{-1}c-\gamma )=(0)$ and $b-\gamma q \in \mathcal{C }$ ; (2) $\alpha $ is an $X$ -outer automorphism of $\mathcal{R }$ and there exist $c \in \mathcal{Q }_r, \lambda \in \mathcal{C }$ , such that $F(x)=\lambda x-\alpha (x)c$ , for all $x\in \mathcal{Q }_r$ , with $\alpha (\mathcal{I })c=0$ .  相似文献   

11.
Let $\mathcal{A}$ and $\mathcal{B}$ be unital rings, and $\mathcal{M}$ be an $\left( {\mathcal{A},\mathcal{B}} \right)$ -bimodule, which is faithful as a left $\mathcal{A}$ -module and also as a right $\mathcal{B}$ -module. Let $\mathcal{U} = Tri\left( {\mathcal{A},\mathcal{M},\mathcal{B}} \right)$ be the triangular algebra. In this paper, we give some different characterizations of Lie higher derivations on $\mathcal{U}$ .  相似文献   

12.
In this paper, we show that $\mathcal{G}$ -Frobenius algebras (for $\mathcal{G}$ a finite groupoid) correspond to a particular class of Frobenius objects in the representation category of $D(k[\mathcal{G}])$ , where $D(k[\mathcal{G}])$ is the Drinfeld double of the quantum groupoid $k[\mathcal{G}]$ (Nikshych et al. 2000).  相似文献   

13.
The present paper proposes a general theory for $\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) $ -complete partially ordered sets (alias $\mathcal{Z} _{1}$ -join complete and $\mathcal{Z}_{2}$ -meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections $\mathcal{Z}_{i}$ (i?=?1,...,4) and $\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) $ , the category $\mathcal{Q}$ P of $\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) $ -complete partially ordered sets and $\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) $ -continuous (alias $\mathcal{ Z}_{3}$ -join preserving and $\mathcal{Z}_{4}$ -meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category $\mathcal{Q}$ S of $\mathcal{Q}$ -spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory $ \mathcal{Q}$ P s of $\mathcal{Q}$ P of all $\mathcal{Q}$ -spatial objects and the full subcategory $\mathcal{Q}$ S s of $\mathcal{Q}$ S of all $\mathcal{Q}$ -sober objects. Here $\mathcal{Q}$ -spatiality and $\mathcal{Q}$ -sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to $\mathcal{Z}$ -compact generation and $\mathcal{Z}$ -sobriety have also been pointed out in this paper.  相似文献   

14.
15.
We study a class of quadratic p-ary functions ${{\mathcal{F}}_{p,n}}$ from ${\mathbb{F}_{p^n}}$ to ${\mathbb{F}_p, p \geq 2}$ , which are well-known to have plateaued Walsh spectrum; i.e., for each ${b \in \mathbb{F}_{p^n}}$ the Walsh transform ${\hat{f}(b)}$ satisfies ${|\hat{f}(b)|^2 \in \{ 0, p^{(n+s)}\}}$ for some integer 0 ≤ s ≤ n ? 1. For various types of integers n, we determine possible values of s, construct ${{\mathcal{F}}_{p,n}}$ with prescribed spectrum, and present enumeration results. Our work generalizes some of the earlier results, in characteristic two, of Khoo et. al. (Des Codes Cryptogr, 38, 279–295, 2006) and Charpin et al. (IEEE Trans Inf Theory 51, 4286–4298, 2005) on semi-bent functions, and of Fitzgerald (Finite Fields Appl 15, 69–81, 2009) on quadratic forms.  相似文献   

16.
In the given article, enveloping C*-algebras of AJW-algebras are considered. Conditions are given, when the enveloping C*-algebra of an AJW-algebra is an AW*-algebra, and corresponding theorems are proved. In particular, we proved that if $\mathcal{A}$ is a real AW*-algebra, $\mathcal{A}_{sa}$ is the JC-algebra of all self-adjoint elements of $\mathcal{A}$ , $\mathcal{A}+i\mathcal{A}$ is an AW*-algebra and $\mathcal{A}\cap i\mathcal{A} = \{0\}$ then the enveloping C*-algebra $C^*(\mathcal{A}_{sa})$ of the JC-algebra $\mathcal{A}_{sa}$ is an AW*-algebra. Moreover, if $\mathcal{A}+i\mathcal{A}$ does not have nonzero direct summands of type I2, then $C^*(\mathcal{A}_{sa})$ coincides with the algebra $\mathcal{A}+i\mathcal{A}$ , i.e. $C^*(\mathcal{A}_{sa})= \mathcal{A}+i\mathcal{A}$ .  相似文献   

17.
We study the well-posedness of a linear control system Σ(A,B,C,D) with unbounded control and observation operators. To this end we associate to our system an operator matrix $\mathcal{A}$ on a product space $\mathcal{X}^{p}$ and call it p-well-posed if $\mathcal{A}$ generates a strongly continuous semigroup on $\mathcal{X}^{p}$ . Our approach is based on the Laplace transform and Fourier multipliers. The results generalize and complement those of Curtain and Weiss (Int. Ser. Numer. Math. vol. 91. Birkhäuser, Basel, 1989), Staffans and Weiss (Trans. Am. Math. Soc. 354:3229–3262, 2002) and are illustrated by a heat equation with boundary control and point observation.  相似文献   

18.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

19.
Let $\mathcal{O }$ be an orbit of the group of Hamiltonian symplectomorphisms acting on the space of Lagrangian submanifolds of a symplectic manifold $(X,\omega ).$ We define a functional $\mathcal{C }:\mathcal{O } \rightarrow \mathbb{R }$ for each differential form $\beta $ of middle degree satisfying $\beta \wedge \omega = 0$ and an exactness condition. If the exactness condition does not hold, $\mathcal{C }$ is defined on the universal cover of $\mathcal{O }.$ A particular instance of $\mathcal{C }$ recovers the Calabi homomorphism. If $\beta $ is the imaginary part of a holomorphic volume form, the critical points of $\mathcal{C }$ are special Lagrangian submanifolds. We present evidence that $\mathcal{C }$ is related by mirror symmetry to a functional introduced by Donaldson to study Einstein–Hermitian metrics on holomorphic vector bundles. In particular, we show that $\mathcal{C }$ is convex on an open subspace $\mathcal{O }^+ \subset \mathcal{O }.$ As a prerequisite, we define a Riemannian metric on $\mathcal{O }^+$ and analyze its geodesics. Finally, we discuss a generalization of the flux homomorphism to the space of Lagrangian submanifolds, and a Lagrangian analog of the flux conjecture.  相似文献   

20.
Let $\mathcal{B}$ be a bornology in a metric space $\langle X,d \rangle$ , that is, a cover of X by nonempty subsets that also forms an ideal. In Beer and Levi (J Math Anal Appl 350:568–589, 2009), the authors introduced the variational notions of strong uniform continuity of a function on $\mathcal{B}$ as an alternative to uniform continuity of the restriction of the function to each member of $\mathcal{B}$ , and the topology of strong uniform convergence on $\mathcal{B}$ as an alternative to the classical topology of uniform convergence on $\mathcal{B}$ . Here we continue this study, showing that shields as introduced in Beer, Costantini and Levi (Bornological Convergence and Shields, Mediterranean J. Math, submitted) play a pivotal role. For example, restricted to continuous functions, the topology of strong uniform convergence on $\mathcal{B}$ reduces to the classical topology if and only if the natural closure of the bornology is shielded from closed sets. The paper also further develops the theory of shields and their applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号