首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
获得覆盖较宽温度和压力范围内的等离子体热力学和输运性质是开展等离子体传热和流动过程数值模拟的必要条件.本文通过联立Saha方程、道尔顿分压定律以及电荷准中性条件求解等离子体组分;采用理想气体动力学理论计算等离子体热力学性质;基于Chapman-Enskog方法求解等离子体输运性质.利用上述方法计算了压力为0.1, 1.0和10.0 atm (1 atm=101325 Pa),电子温度在300—30000 K范围内,非局域热力学平衡(电子温度不等于重粒子温度)条件下氩-氮等离子体的热力学和输运性质.结果表明压力和非平衡度会影响等离子体中各化学反应过程,从而对氩-氮等离子体的热力学及输运性质有较大的影响.在局域热力学平衡条件下,计算获得的氩-氮等离子体输运性质和文献报道的数据符合良好.  相似文献   

2.
陈艳秋 《物理学报》2014,63(20):205201-205201
采用基于将Chapman-Enskog方法扩展到高阶近似的方法计算获得了温度范围在300—40000 K,不同压力条件下氙等离子体的黏性、热导率和电导率.热力学平衡条件下的计算结果与文献报道的实验和计算结果符合良好,验证了计算方法和结果的合理性与准确性.在此基础上,计算获得了电子温度(T e)不等于重粒子温度(T h)的热力学非平衡和化学平衡条件下氙等离子体的输运性质,并分析了输运性质随压力和热力学非平衡程度变化的原因.  相似文献   

3.
朱诚  陈仙辉  王城  宋明  夏维东 《物理学报》2023,(12):201-212
计算了广温度范围(300—30000 K)和广压力范围(0.1—10 atm, 1 atm=101.325 k Pa)下,不同混合物比例、碳和硅蒸气浓度的局域热力学平衡(LTE)和化学平衡(LCE)的氩-碳-硅等离子体组分、热力学性质和输运系数.等离子体气相平衡组分使用质量作用定律计算,同时凝聚相组分采用相平衡的方法计算.输运系数的计算包括黏度、电导率和热导率,使用拓展到高阶近似的Chapman-Enskog方法.采用文献中较新的数据得到了较为准确的碰撞积分,导出了Ar-C-Si等离子体的输运系数.结果表明,在相变温度以下,凝聚态物种的引入导致Ar-C-Si等离子体的热力学性质、输运系数与纯Ar等离子体接近,在相变温度点则会产生不连续点.压力、碳/硅蒸气浓度和比例对等离子体热力学性质和输运系数具有较大影响.最终计算值与文献数据对比符合良好,有望为氩-碳-硅等离子体传热流动数值模拟提供基础数据.  相似文献   

4.
本文采用将经典的Chapman-Enskog方法扩展到高阶近似的方法计算获得了双温度化学平衡条件下空气等离子体的粘性、热导率和电导率。结果表明,压力和热力学非平衡程度的改变会影响空气组分解离和电离反应的温度区间,从而使气体的粘性和热导率的峰值区域产生变化。局域热力学平衡条件下空气等离子体输运性质的计算结果与文献报道结果符合较好,验证了本文结果的可靠性。  相似文献   

5.
揭示了低温流体~3He的热导率在液态区随温度和压力两个状态参数变化的反常规律。综合该反常规律以及热导率在临界点附近的突变特性,首次提出了~3He在0.003 K至临界温度3.3157 K温区内完整的饱和线热导率方程以及压力高至20 MPa的压缩液相区热导率方程。方程计算值与实验数据相对偏差小于±1.5%,与高精度实验数据偏差小于±0.4%,并且在极低温条件下光滑过渡为由量子理论预测的理论极限.  相似文献   

6.
付志坚  陈其峰  陈向荣 《物理学报》2011,60(5):55202-055202
金属等离子体的组分为计算热力学、光学和辐射输运特性研究提供了基本的输入参数.为获得此参数,本文用部分电离等离子体模型,在考虑金属发生三次电离,以及电子与中性粒子的极化作用、离子与离子之间、电子与离子之间、电子与电子之间库仑相互作用下,计算得到了等离子体组分,进而用线性响应理论计算了金属钛和银的电导率.并与已有的实验数据进行了比较,验证了模型的可靠性.在此基础上进一步预测了密度在0.001—2.0 g/cm3、温度在1.5×104—2.5×104关键词: 等离子体 线性响应理论 电离度 输运系数  相似文献   

7.
用3.39μm和0.63μm同时振荡的双波长He-Ne激光器,首次测量了脉冲氦等离子体中电子密度(10~(14)~10~(15)cm~(-3)的时间和径向空间分布.  相似文献   

8.
本文用Monte Carlo方法模拟了偏滤器扁平抽气收集板附近区域的氦原子输运。考虑了氦原子被电子碰撞电离,氦原子与等离子体离子之间的弹性散射等原子过程以及离子的热运动和沿磁力线的流动。计算表明当偏滤器等离子体密度在7cm距离内从里向靶板逐渐增加约4.7倍,而温度分布保持不变时,氦灰返回靶板的几率比密度在7cm内向靶板递减4.7倍的通常正分布提高约45%。磁力线与靶板的交角、靶板的温度,边缘等离子体鞘层电位以及不同的靶材料对氦返回靶板几率的影响作了比较。得到的结果对托卡马克聚变裂变增殖堆孔栏和偏滤器工程设计有参考价值。  相似文献   

9.
运用第一性原理密度泛函理论结合非平衡格林函数方法,对3个Si原子构成的直线链耦合在Au(100)面形成的三明治结构的纳米结点的电子输运进行计算.结果得到结点电导随距离的变化,当dz=1.584 nm时,结合能最小,结构最稳定,此时Si-Si键长为0.216 nm,Si-Au键长为0.227 nm,电导为0.729 G0(G0=2e2/h),其电子传输通道主要由Si原子的pxpy轨道电子构成;随着外电压的增大,结点的电导减小,而其I-V曲线表现出线性特征.  相似文献   

10.
柳福提  程艳  羊富彬  程晓洪  陈向荣 《物理学报》2013,62(10):107401-107401
采用密度泛函理论和非平衡格林函数相结合的方法对Au(100)-Si-Au(100) 系统左侧对顶位、右侧对空位的纳米结点的电子输运性质进行了理论模拟计算, 结果得到纳米结点的电导随电极距离(dz)增大而减小. 在dz =9.72 Å时, 结点的结合能最低, 结构最稳定, 此时电导为1.227G0 (G0=2e2/h), 其电子输运通道主要是Si原子的px, pypz轨道电子形成的最高占居轨道共振峰; 在外偏压下, 电流-电压曲线表现出线性特征; 随着外加正负电压的增大, 电导略有减小, 且表现出不对称性的变化. 关键词: 硅原子 电子输运 密度泛函理论 非平衡格林函数  相似文献   

11.
采用另加偏压的单阴极弧氦放电直线等离子体装置对氦等离子体的基本特性进行了研究.对氦轴向输运规律做了描述并与光谱测量数据做了定性地比较.实验结果表明,氦等离子体的电子温度与电子密度均随放电电流、约束磁场的增加而增加.氦原子与氦离子的辐射光谱随放电电流、偏压、磁场的变化规律进行了测量分析,同时氦离子对钨靶积分辐照效应进行了观察.这些结果不但提供了氦等离子体的基本特性,对于研究氦离子与面向等离子材料相互作用导致产生气泡、肿胀、脆化损伤等的评估,特别是对将来伴有(n,α)反应时具有一定的参考价值.  相似文献   

12.
采用另加偏压的单阴极弧氦放电直线等离子体装置对氦等离子体的基本特性进行了研究。对氦轴向输运规律做了描述并与光谱测量数据做了定性地比较。实验结果表明,氦等离子体的电子温度与电子密度均随放电电流、约束磁场的增加而增加。氦原子与氦离子的辐射光谱随放电电流、偏压、磁场的变化规律进行了测量分析,同时氦离子对钨靶积分辐照效应进行了观察。这些结果不但提供了氦等离子体的基本特性,对于研究氦离子与面向等离子材料相互作用导致产生气泡、肿胀、脆化损伤等的评估,特别是对将来伴有(n, α)反应时具有一定的参考价值。  相似文献   

13.
空气放电非平衡等离子体的模拟计算   总被引:1,自引:0,他引:1       下载免费PDF全文
 基于空气放电非平衡等离子体动力学,对空气放电进行了数值计算,分析了放电后等离子体中的主要粒子(N2(v6),N2(A3),O2(a1),O和O3)数密度随起始温度、电子数密度和约化场强的变化趋势。计算结果表明,随着初始温度的升高,空气放电产生的粒子数密度增加。温度为300 K时,放电产生的O原子数密度最大值约为4.90×7 cm-3,而当温度升高到400 K和500 K时,O原子数密度的最大值则相应地增加到5.2×1010 cm-3和5.51×1010 cm-3。约化场强的影响与温度类似,其中氮气的振动激发态N2(v6)数密度随约化场强的变化幅度不明显。电子数密度增加,粒子数密度大幅增加,氮分子的激发态N2(A3)粒子数密度与电子数密度保持严格的线性关系。  相似文献   

14.
基于空气放电非平衡等离子体动力学,对空气放电进行了数值计算,分析了放电后等离子体中的主要粒子(N2(v6),N2(A3),O2(a1),O和O3)数密度随起始温度、电子数密度和约化场强的变化趋势。计算结果表明,随着初始温度的升高,空气放电产生的粒子数密度增加。温度为300 K时,放电产生的O原子数密度最大值约为4.90×7 cm-3,而当温度升高到400 K和500 K时,O原子数密度的最大值则相应地增加到5.2×1010 cm-3和5.51×1010 cm-3。约化场强的影响与温度类似,其中氮气的振动激发态N2(v6)数密度随约化场强的变化幅度不明显。电子数密度增加,粒子数密度大幅增加,氮分子的激发态N2(A3)粒子数密度与电子数密度保持严格的线性关系。  相似文献   

15.
稠密氦在高温高压下将会发生电离, 电离能会因为原子、离子以及电子之间的相互作用而降低. 考虑He,He+,He2+,e之间的相互作用, 通过粒子化学势平衡得到非理想的电离平衡方程,用自洽流体变分过程对方程求解, 进而对自由能求导获得体系的热力学状态参量. 模型计算结果与已有的实验和理论计算相一致. 用此模型预测密度10-3—100.3 g/cm3和温度4—7 eV范围的物态方程, 获得了压力在500 GPa以内的理论数据. 计算表明粒子间的非理想相互作用引起的电离能降低是出现压致电离现象的主要原因,在高温高密度物态方程的计算中必须考虑粒子间非理想相互作用对电离能修正的影响. 关键词: 氦 物态方程 部分电离等离子体 自洽变分  相似文献   

16.
分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。  相似文献   

17.
氦等离子体处理纳米二氧化硅溶胶涂覆T300碳纤维能构造出特定空间结构形态的纳米涂覆层.扫描电子显微镜照片显示,经氦等离子体处理后纳米二氧化硅溶胶涂覆T300碳纤维的纳米涂覆层在纤维表面分布均匀,起到填补纤维表面微观缺陷的功能.X射线光电子能谱及傅里叶变换红外光谱显示,纤维表面被引入了活性官能团,纳米二氧化硅涂覆层与碳纤维间有表面激活反应.形成纳米界面结构的T300碳纤维表面与纳米二氧化硅涂覆层间的相互作用符合艾琳方程,利用热激活体积可以对其相互作用进行定量分析.拉伸试验表明,屈服塑性变形导致纳米界面结构热激活,纳米微粒阻碍碳纤维表面大分子链形貌变化的热激活体积是纳米界面结构性能的重要表征. 关键词: 激活体积 溶胶涂覆 氦等离子体 纳米界面结构  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号