首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new cyclic peptide, prepatellamide A (1), along with three known cyclic peptides (2)— (4), was isolated from the ascidianLissoclinum patella. The structure of prepatellamide A was determined from one- and two-dimensional1H and13C NMR spectra. The known cyclic peptides were identified as patellamides A (2), B (3) and C (4).  相似文献   

2.
A new cyclic peptide, prepatellamide A (1), along with three known cyclic peptides (2)— (4), was isolated from the ascidianLissoclinum patella. The structure of prepatellamide A was determined from one- and two-dimensional1H and13C NMR spectra. The known cyclic peptides were identified as patellamides A (2), B (3) and C (4).  相似文献   

3.
A new complex of cyclic peptide lactone antibiotics from Bacillus subtilis, which we named Maltacines, has recently been described. The structure elucidation of four of them is reported in this paper. The amino acid sequences and structures of the peptides were found by MS(n) of the ring-opened linear peptides, which gave uninterrupted sequences of Bn and Y'n ions. The identities of three unknown residues in the sequences were solved by a combination of derivatisation with phenylisothiocyanate (PITC), high-resolution mass spectrometry and H/D exchange. The nature and position of the cyclic structure was disclosed by a chemo-selective ring opening with Na18OH and was found to be a lactone formed between a hydroxyl of residue number 4 and the C-terminal amino acid number 12. For verification of the structure of the B2+ ion, peptides with different combinations of P/Q and P/K at the N-terminus were synthesised. The structure of the four peptides were found to be: C1a and C2a: cyclo-4,12(P-Q-Y-Adip-V-E-T-Y-Orn-103-Y-I-OH) and C1b/C2b: cyclo-4,12(P-Q-Y-Adip-V-E-T-Y-K-103-Y-I-OH). Adip = aminodihydroxy pentanoic acid.  相似文献   

4.
The cyclic peptides from linseed are composed exclusively of the hydrophobic amino acids: Phe, Leu, Ile, Val, Met, Pro, and Trp. Because these compounds does not contain functional groups which undergo easily protonation or deprotonation. their ionization in solvents used usually for peptide analysis is not efficient. A rapid and sensitive procedure for detection and structure elucidation of the cyclic peptides based on ionization with Na+ and NH4+ ions. A cationisation of methionine containing peptides with methyl iodide has been also described. The extract of seeds of Linum utitatissimum was analyzed directly by ESI-MS and neutral loss ESI-MS/MS technique. The analysis confirms the presence of cyclolinopeptides reported previously: CLA (c(Pro-Pro-Phe-Phe-Leu-Ile-Ile-Leu-Val), and CLB (c(Pro-Pro-Phe-Phe-Val-Ile-Met-Ile-Leu)). Cyclolinopeptides CLC, CLD, CLE, and CLG, which contain methionine oxide, were detected in relatively small quantities. These peptides results likely from the oxidation of their not reported precursors: CLD' (c (Pro- Phe-Phe-Trp-Ile-Met-Leu-Leu)), CLE'(c (Pro-Leu-Phe-Ile-Met-Leu-Val-Phe)), CLF (c (Pro-Phe-Phe-Trp- Val-Met-Leu-Met), and CLG (c (Pro-Phe-Phe-Trp-Ile-Met-Leu-Met), present at higher concentrations in the extract protected from atmospheric oxygen. The sequences of the unreported cyclic peptides were proposed on the basis of CID experiments and homology with peptides described by Morita,1,2 and supported by the fragmentation of synthetic analogues of CLA of a known structure.  相似文献   

5.
Cation-pi interactions between amino acid side chains are increasingly being recognized as important structural and functional features of proteins and other biomolecules. Although these interactions have been found in static protein structures, they have not yet been detected in dynamic biomolecular systems. We determined, by (1)H NMR spectroscopic titrations, the energies of cation-pi interactions of the amino acid derivative AcLysOMe (1) with AcPheOEt (2) and with AcTyrOEt (3) in aqueous and three organic solvents. The interaction energy is substantial; it ranges from -2.1 to -3.4 kcal/mol and depends only slightly on the dielectric constant of the solvent. To assess the effects of auxiliary interactions and structural preorganization on formation of cation-pi interactions, we studied these interactions in the association of pentapeptides. Upon binding of the positively-charged peptide AcLysLysLysLysLysNH(2) (5) to the negatively-charged partner AcAspAspXAspAspNH(2) (6), in which X is Leu (6a), Tyr (6b), and Phe (6c), multiple interactions occur. Association of the two pentapeptides is dynamic. Free peptides and their complex are in fast exchange on the NMR time-scale, and 2D (1)H ROESY spectra of the complex of the two pentapeptides do not show intermolecular ROESY peaks. Perturbations of the chemical shifts indicated that the aromatic groups in peptides 6b and 6c were affected by the association with 5. The association constants K(A) for 5 with 6a and with 6b are nearly equal, (4.0 +/- 0.7) x 10(3) and (5.0 +/- 1.0) x 10(3) M(-)(1), respectively, while K(A) for 5 with 6c is larger, (8.3 +/- 1.3) x 10(3) M(-)(1). Molecular-dynamics (MD) simulations of the pentapeptide pairs confirmed that their association is dynamic and showed that cation-pi contacts between the two peptides are stereochemically possible. A transient complex between 5 and 6 with a prominent cation-pi interaction, obtained from MD simulations, was used as a template to design cyclic peptides C(X) featuring persistent cation-pi interactions. The cyclic peptide C(X) had a sequence in which X is Tyr, Phe, and Leu. The first two peptides do, but the third does not, contain the aromatic residue capable of interacting with a cationic Lys residue. This covalent construct offered conformational stability over the noncovalent complexes and allowed thorough studies by 2D NMR spectroscopy. Multiple conformations of the cyclic peptides C(Tyr) and C(Phe) are in slow exchange on the NMR time-scale. In one of these conformations, cation-pi interaction between Lys3 and Tyr9/Phe9 is clearly evident. Multiple NOEs between the side chains of residues 3 and 9 are observed; chemical-shift changes are consistent with the placement of the side chain of Lys3 over the aromatic ring. In contrast, the cyclic peptide C(Leu) showed no evidence for close approach of the side chains of Lys3 and Leu9. The cation-pi interaction persists in both DMSO and aqueous solvents. When the disulfide bond in the cyclic peptide C(Phe) was removed, the cation-pi interaction in the acyclic peptide AC(Phe) remained. To test the reliability of the pK(a) criterion for the existence of cation-pi interactions, we determined residue-specific pK(a) values of all four Lys side chains in all three cyclic peptides C(X). While NOE cross-peaks and perturbations of the chemical shifts clearly show the existence of the cation-pi interaction, pK(a) values of Lys3 in C(Tyr) and in C(Phe) differ only marginally from those values of other lysines in these dynamic peptides. Our experimental results with dynamic peptide systems highlight the role of cation-pi interactions in both intermolecular recognition at the protein-protein interface and intramolecular processes such as protein folding.  相似文献   

6.
In this study, the density functional theory computational method is used to investigate the encapsulation process of metformin into three types of the cyclic peptides composed of eight serine (CP1), eight glycine (CP2), and four serine‐glycine (CP3) cyclic peptides as a new model in the process of drug delivery in the gas phase. The obtained results using the B3LYP/6‐31++G (d,p) method indicate that the complexes formed are energetically favored. Furthermore, results reveal that the drug encapsulation process is typically chemisorption. The natural bonding orbital analysis shows that the intermolecular interaction of the C2 complex (metformin/CP2) is stronger than the C1 (Metformin/CP1) and C3 (Metformin/CP3) complexes due to greater total charge transfer energy, and the C1 complex is found to be the most favored complex. The theory of atoms in molecule (AIM) method is used to analyze the nature of interactions in different molecular systems. The results show the investigated cyclic peptides as effective carriers of metformin in the nanomedicine field.  相似文献   

7.
A series of synthetic cyclic decapeptides and other smaller cyclic peptides were analyzed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The investigated compounds were cyclized in a head-to-tail manner and contained non-proteinaceous amino acids, such as D-phenylalanine, D,L-4-carboxyphenylalanine, epsilon-aminocaproic acid, and gamma-aminobutyric acid, and were synthesized in a program to develop inhibitors of pp60(c-src) (Src), a tyrosine kinase that is involved in signal transduction and growth regulation. Post-source decay (PSD) spectra of the cyclic peptides featured abundant sequence ions. Two preferential ring opening reactions were detected resulting in linear fragment ions with an N-terminus of proline and a C-terminus of glutamic acid, respectively. MALDI-PSD spectra even permitted de novo sequencing of some cyclic peptides. Systematic studies on cyclic peptides using this method of fragmentation have not been reported to date. This work presents an easy mass spectrometric method, MALDI-PSD, for the characterization and identification of cyclic peptides.  相似文献   

8.
To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y4). A peptide whereby Y4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye.  相似文献   

9.
A novel family of hairpin cyclic peptides has been designed on the basis of the use of norbornene units as the bridging ligands. The design is flexible with respect to the choice of an amino acid, the ring size, and the nature of the second bridging ligand as illustrated here with the preparation of a large number of norborneno cyclic peptides containing a variety of amino acids in ring sizes varying from 12- to 29-membered, with the choice of the second bridging ligand being a rigid norbornene (11, 13a,b), an adamantane unit (7a,b and 8), or a flexible cystine residue (4a,b and 10). The presence of built-in handles (as protected COOH groups) permits the attachment of a variety of subunits as shown here with the ligation of Leu-Leu, Val-Val, or Aib-Aib pendants in 4b, 7b, and 13b, respectively. This novel class of constrained cyclic peptides are demonstrated to adopt beta-sheet- or hairpin-like conformation as shown by (1)H NMR and CD spectra. Membrane ion-transport studies have shown that the norborneno cyclic peptides 4b and 7b containing Leu-Leu or Val-Val pendants symmetrically placed on the exterior of the ring show high efficiency and selectivity in the transport of specifically monovalent cations. This property can be attributed to the hairpin-like architecture induced by the norbornene unit since the bis-adamantano peptide 15 containing two pairs of Leu-Leu pendants on the exterior is able to transport both monovalent (Na(+), K(+)) and divalent (Mg(2+)/Ca(2+)) cations.  相似文献   

10.
Herein, we report studies on the influence of chiral beta(2)-amino acids in the design of conformationally homogeneous cyclic tetrapeptide scaffolds. The cyclic alpha-tetrapeptide cyclo(-Phe-D-Pro-Lys-Phe-) (1) and its four mixed analogues, having one of the alpha-Phe replaced by either an (S)- or an (R)-beta(2)hPhe residue (i.e., cyclo(-(R)-beta(2)hPhe-D-Pro-Lys-Phe) (2a), cyclo(-(S)-beta(2)hPhe-D-Pro-Lys-Phe-) (2b), cyclo(-Phe-D-Pro-Lys-(R)-beta(2)hPhe-) (3a), and cyclo(-Phe-D-Pro-Lys-(R)-beta(2)hPhe-) (3b)), were all synthesized through solid-phase procedures followed by solution-phase cyclization. Initially, all five cyclo-peptides were analyzed by (1)H NMR spectroscopic studies in different solvents and at variable temperatures. Subsequently, a detailed 2D NMR spectroscopic analysis of three of the mixed peptides in water was performed, and the information thus extracted was used as restraints in a computational study on the peptides' conformational preference. An X-ray crystallographic study on the side chain-protected (Boc) 2a revealed the solid-state structure of this peptide. The results presented herein, together with previous literature data on beta(3)-amino acid residues, conclusively demonstrate the potential of beta-amino acids in the design of conformationally homogeneous cyclic peptides that are homologous to peptides with known applications in biomedicinal chemistry and as molecular receptors.  相似文献   

11.
Cyclic pentapeptides (e.g. Ac‐(cyclo‐1,5)‐[KAXAD]‐NH2; X=Ala, 1 ; Arg, 2 ) in water adopt one α‐helical turn defined by three hydrogen bonds. NMR structure analysis reveals a slight distortion from α‐helicity at the C‐terminal aspartate caused by torsional restraints imposed by the K(i)–D(i+4) lactam bridge. To investigate this effect on helix nucleation, the more water‐soluble 2 was appended to N‐, C‐, or both termini of a palindromic peptide ARAARAARA (≤5 % helicity), resulting in 67, 92, or 100 % relative α‐helicity, as calculated from CD spectra. From the C‐terminus of peptides, 2 can nucleate at least six α‐helical turns. From the N‐terminus, imperfect alignment of the Asp5 backbone amide in 2 reduces helix nucleation, but is corrected by a second unit of 2 separated by 0–9 residues from the first. These cyclic peptides are extremely versatile helix nucleators that can be placed anywhere in 5–25 residue peptides, which correspond to most helix lengths in protein–protein interactions.  相似文献   

12.
A new complex of cyclic peptide lactone antibiotics from Bacillus subtilis, which we named Maltacines has recently been described. The structure elucidation of three of them is reported in this paper. The amino acid sequences and structures of the peptides were found by MS(n) of the ring-opened linear peptides that gave uninterrupted sequences of Bn and Y'n ions. The identities of four unknown residues in the sequences were solved by a combination of derivatisation with phenylisothiocyanate (PITC), high-resolution mass spectrometry and H/D exchange. The nature and position of the cyclic structure was disclosed by a chemo-selective ring opening with Na18OH and was found to be a lactone formed between a hydroxyl of residue number 4 and the C-terminal amino acid number 12. For verification of the structure of the B2 + ion, peptides with different combinations of P/Q and P/K at the N-terminus were synthesized. The structures of the four peptides is tentatively suggested to be: D1a: cyclo(4,12)-P-Q-Y-Adip-A-E-T-Y-Orn-HGly-Y-I-OH, D1b: cyclo(4,12)-P-Q-Y-Adip-A-E-T-Y-Orn-S-Y-I-OH and D1c: cyclo(4,12)-P-Q-Y-Adip-A-E-T-Y-K-S-Y-I-OH. Adip = aminodihydroxy pentanoic acid and HGly = hydroxyglycine.  相似文献   

13.
Several oligomers constructed with (1R,2S)-2-aminocyclobutane-1-carboxylic acid and glycine, β-alanine, and γ-amino butyric acid (GABA), respectively, joined in alternation have been synthesized and studied by means of NMR and CD experiments as well as with computational calculations. Results account for the spacer length effect on folding and show that conformational preference for these hybrid peptides can be tuned from β-sheet-like folding for those containing a C(2) or C(4) linear segment to a helical folding for those with a C(3) spacer between cyclobutane residues. The introduction of cyclic spacers between these residues does not modify the extended ribbon-type structure previously manifested in poly(cis-cyclobutane) β-oligomers.  相似文献   

14.
Incorporation of omega-amino acids into peptide sequences plays an important role in designing peptides with modified backbone conformation and enhanced stability against proteolysis. The present study establishes the presence of unusual turns involving 12-membered hydrogen bonded rings in terminally blocked tri- and tetrapeptides. X-ray diffraction analysis of single crystals and NMR studies have been used to probe the three-dimensional structures of two terminally protected short peptides, Boc-gamma-Abu(1)-Aib(2)-Ala(3)-OMe 1 and Boc-gamma-Abu(1)-Aib(2)-Ala(3)-Aib(4)-OMe 2 (gamma-Abu = gamma-aminobutyric acid), in which conformationally flexible omega-amino acids (gamma-Abu) and conformationally restricted alpha-aminoisobutyric acid (Aib) residues are positioned contiguously. The crystal structures of both peptides 1 and 2 exhibit unusual turns composed of 12-membered hydrogen bonded rings involving C [double bond] O from the Boc-group and Ala(3) NH. A type I' beta-turn was observed in the structure of peptide 2 adjacent to the unusual turn with a hydrogen bond between gamma-Abu(1) C [double bond] O and Aib(4) NH. The crystals of peptide 1 are in the space group P2(1), a = 9.3020(10) A, b = 23.785(2) A, c = 10.022(3) A, beta = 101.35 degrees(4), Z = 4, R = 5.7%, and R(w) = 14.5%. Similarly, the crystals of peptide 2 are in the space group C2, a = 19.0772(6) A, b = 8.7883(2) A, c = 16.7758(3) A, beta = 110.7910 degrees(10), Z = 4, R = 6.71%, and R(w) = 15.11%. The unusual turn in both peptides 1 and 2 are retained in solution as is evident from NMR studies in CDCl(3). The role of the adjacently located Aib residue to nucleate the 12-membered hydrogen bonded ring is also addressed.  相似文献   

15.
Seven new depsipeptides, termed largamides A-G (1-7), and one new cyclic peptide, largamide H (8), have been isolated from the marine cyanobacterium Oscillatoria sp. Their structures were determined by NMR and ESI-MS techniques. The absolute configurations were assigned using LC-MS, chiral HPLC, and combined analysis of homonuclear and heteronuclear (2,3)J couplings, along with ROE data. Largamides, isolated from a single homogeneous cyanobacterial collection, represent three different structural classes of peptides. Largamides A-C (1-3) are characterized by the unusual occurrence of a senecioic acid unit, while largamides B (2) and C (3) possess in addition the rare 2-amino-5-(4'-hydroxyphenyl)pentanoic acid (Ahppa) and the novel 2-amino-6-(4'-hydroxyphenyl)hexanoic acid (Ahpha), respectively. Largamides D-G (4-7) are the first 3-amino-6-hydroxy-2-piperidone acid (Ahp)-containing depsipeptides reported with the rare Ahppa unit. Largamide H (8) is a unique cyclic peptide displaying a new 2,5-dihydroxylated beta-amino acid moiety, a methoxylated derivative of Ahppa, and two residues of the nonstandard 2,3-dehydro-2-aminobutanoic acid (Dab). Largamides D-G (4-7) inhibited chymotrypsin with IC(50) values ranging between 4 and 25 microM.  相似文献   

16.
A rare new cyclic tetrapeptide, 5,5′‐epoxy‐MKN‐349A ( 1 ), featured by a MKN‐349A ( 5 ) skeleton and containing an uncommon ether bridge between C(5) and C(5′), and a new steroid, named 11‐O‐acetyl‐NGA0187 ( 2 ), together with two known steroids, 3 and 4 , were isolated from an endophytic fungus Penicillium sp. GD6 associated with the Chinese mangrove Bruguiera gymnorrhiza. The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses and by comparison with the data of related compounds reported in literature. Neither of the compounds 3 and 4 , isolated in this study, showed obvious bioactivities in the antibacterial bioassay experiments.  相似文献   

17.
A new complex of cyclic peptide lactone antibiotics from Bacillus subtilis, which we named maltacines, has recently been described. The structure elucidation of four of them is reported in this paper. The amino acid sequences and structures of the peptides were found by MSn of the ring-opened linear peptides that gave uninterrupted sequences of Bn and Y'n ions. The identities of three unknown residues in the sequences were solved by a combination of derivatization with phenyl isothiocyanate (PITC), high-resolution mass spectrometry and H/D exchange. The nature and position of the cyclic structure were revealed by a chemoselective ring opening with Na18OH and was found to be a lactone formed between a hydroxyl of residue number 4 and the C-terminal amino acid number 12. For verification of the structure of the B2+ ion, peptides with different combinations of P/Q and P/K at the N-terminus were synthesized. The structures of the four peptides were found to be as follows: B1a/B2a, cyclo-4,12(P-Q-Y-HNLeu-A-E-T-Y-Orn-103-Y-I-OH); and B1b/B2b, cyclo-4,12(P-Q-Y-HNLeu-A-E-T-Y-K-103-Y-I-OH).  相似文献   

18.
Dissociation of the amide bonds in a protonated peptide leads to N-terminal sequence fragments with cyclic structures and C-terminal sequence fragments with linear structures. The ionic fragments containing the N-terminus (b n ) have been shown to be protonated oxazolones, whereas those containing the C-terminus (y n ) are protonated linear peptides. The coproduced neutral fragments are cyclic peptides from the N-terminus and linear peptides from the C-terminus. A likely determinant of these structural choices is the proton affinity (PA) of the described peptide segments. This study determines the PA values of such segments (Pep), i.e., cyclic and linear dipeptides and a relevant oxazolone, based on the dissociations of proton-bound dimers [Pep + B i ]H+ in which B i is a reference base of known PA value (Cooks kinetic method). The dissociations are assessed at different internal energies to thereby obtain both proton affinities as well as entropies of protonation. For species with comparable amino acid composition, the proton affinity (and gas phase basicity) follows the order cyclic peptide ≪ oxazolone ≈ linear peptide. This ranking is consistent with dissociation of the protonated peptide via interconverting proton-bound complexes involving N-terminal oxazolone (O) or cyclopeptide (C) segments and C-terminal linear peptide segments (L), viz. O ⋯ H+ ⋯ L ⇄ C ⋯ H+ ⋯ L. N-terminal sequence ions (b n ) are formed with oxazolone structures which can efficiently compete for the proton with the linear segments. On the other hand, N-terminal neutral fragments detach as cyclic peptides, with H+ now being retained by the more basic linear segment from the C-terminus to yield y n .  相似文献   

19.
《中国化学会会志》2018,65(4):405-415
Cyclic peptides, because of their unique spatial conformations, simplicity, and limited conformational freedom, are widely used as model molecules for larger peptides in chemistry and biochemistry. In this work, the ionization energies and photoelectron spectra of different conformers of the cyclic peptides (n = 2–15) were calculated using the symmetry‐adapted cluster‐configuration interaction (SAC‐CI) method and D95 + (d,p) basis set in the gas phase. The calculated photoelectron spectra were used to study the electronic structures of the cyclic peptides. It was observed that the first ionization energy of the cyclic peptides decreases with the ring size, reaches a minimum, and then increases. In addition, the first ionization band of the cyclic peptides was assigned to the ionization of the lone electron pairs of the nitrogen atoms, although there are π electrons of the CO bond and the lone electron pairs of oxygen atoms in the structure of the peptides.  相似文献   

20.
CO2‐based, crosslinked poly(hydroxyl urethane)s (PHUs) are accessed via a set of efficient reactions based on the addition chemistry of thiol‐ene and amines‐cyclic carbonates. This strategy to utilize 5‐membered cyclic carbonates produced from CO2 is robust, facile, modular, and atomically efficient in nature. The thiol‐ene reaction was utilized to access bis(cyclic carbonate), tris(cyclic carbonate), and tetrakis(cyclic carbonate) in quantitative yield from 4‐vinyl‐1,3‐dioxolan‐2‐one and thiols. Multi‐functional cyclic carbonates were simply mixed with diethylenetriamine and/or 1,6‐diaminohexane to generate crosslinked PHUs from 25 to 80 °C. These materials are easy to scale‐up and are potential candidates in many applications such as coatings, binders, and resins. The resulting polymers have glass transition temperatures between ?1 and 16 °C and thermal decomposition temperatures from 190 to 230 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号