首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of hydrophobic chitin and chitosan with sodium dodecyl sulfate (SDS) has been studied by titration calorimetry at 298.15K. The nature of interaction of the surfactant and biopolymers was followed by enthalpy interaction profiles. The mixing enthalpy curves were determined by mixing SDS solutions above their critical micelle concentration with chitin and chitosan suspensions in different concentrations. The Gibbs free energy of aggregation values were -23.21, -22.71 and -21.53 kJ mol(-1) for chitin in 0.02, 0.05 and 0.1% concentration, respectively, and 28.30, 24.38 and 24.20 kJ mol(-1) for chitosan in 0.02, 0.05 and 0.1% concentration, respectively. The critical aggregation concentration (cac) obtained by calorimetric data gave 6.32, 7.07 and 9.14 mmol kg(-1) in 0.02, 0.05 and 0.1% concentration, respectively, for chitin and 2.09, 4.91 and 5.11 mmol kg(-1) for chitosan in 0.02, 0.05 and 0.1% concentration, respectively.  相似文献   

2.
Nanocrystalline zinc phosphate tetrahydrate was synthesized by solid-state reaction at ambient temperature using Na3PO4·12H2O and ZnSO4·7H2O as regents. The enthalpy of reaction and the standard enthalpy of formation of zinc phosphate tetrahydrate were studied by microcalorimeter. According to Hess s law, a new thermochemical cycle was designed. The dissolution enthalpies of reactant (△H1) and product (△H2) were performed by a RD496 microcalorimeter at 298.15 K using aqueous solution of hydrochloric acid (4mol/L) as a calorimetric solvent. Ultraviolet spectrum, conductivity and refractive index were measured respectively. The results show as follows: △H1=(-47.180±0.084) kJ/mol, △H2=(-7.617±0.096 )kJ/mol. The ultraviolet spectra of the above solution are the same. Conductivity values after 500 times diluted are 2180 and 2181μs/cm respectively. Refractive indexes are 1.3679 and 1.3678 respectively. The standard enthalpy value of the reaction was calculated: △rHm=-39.530 kJ/mol. The standard enthalpy of formation for zinc phosphate tetrahydrate are recommended -4354.004 kJ/mol.  相似文献   

3.
The energy of combustion of crystalline 1,2,3,4-tetrachlorodibenzo-p-dioxine (-5122.9 ± 7.4 kJ/mol) was measured using an isothermic-shell calorimeter with a rotating platinum plated bomb. The result was used to calculate the enthalpy of combustion (-5120.4 ± 7.4 kJ/mol) and formation (?267.8 ± 7.6 kJ/mol) for the crystalline state. The enthalpy of sublimation was measured using a Calvet microcalorimeter at 411.5 K (116.0 ± 2.6 kJ/mol); recalculation to T = 298.15 K gave 118.7 ± 2.6 kJ/mol. The enthalpy of formation of 1,2,3,4-tetrachlorodibenzo-p-dioxine in the gas state was calculated (?149.1 ± 8.0 kJ/mol)  相似文献   

4.
A static bomb calorimeter has been used to measure the standard molar energy of combustion, in oxygen, at T = 298.15 K, of a commercial sample of cytosine. From this energy, the standard (p degrees = 0.1 MPa) molar enthalpy of formation in the crystalline state was derived as -(221.9 +/- 1.7) kJ.mol(-1). This value confirms one experimental value already published in the literature but differs from another literature value by 13.5 kJ.mol(-1). Using the present standard molar enthalpy of formation in the condensed phase and the enthalpy of sublimation due to Burkinshaw and Mortimer [J. Chem. Soc., Dalton Trans. 1984, 75], (155.0 +/- 3.0) kJ.mol(-1), results in a value for the gas-phase standard molar enthalpy of formation for cytosine of -66.9 kJ.mol(-1). A similar value, -65.1 kJ.mol(-1), has been estimated after G3MP2B3 calculations combined with the reaction of atomization on three different tautomers of cytosine. In agreement with experimental evidence, the hydroxy-amino tautomer is the most stable form of cytosine in the gas phase. The enthalpies of formation of the other two tautomers were also estimated as -60.7 kJ.mol(-1) and -57.2 kJ.mol(-1) for the oxo-amino and oxo-imino tautomers, respectively. The same composite approach was also used to compute other thermochemical data, which is difficult to be measured experimentally, such as C-H, N-H, and O-H bond dissociation enthalpies, gas-phase acidities, and ionization enthalpies.  相似文献   

5.
Here, we report on a new aspect of the adsorption of Br- on the surface of gold. The adsorption of dodecyltrimethylammonium bromide (C12TABr) from aqueous solutions onto macroporous gold particles was studied by continuous flow frontal analysis solid/liquid chromatography and flow adsorption microcalorimetry. The material balance and enthalpy balance of adsorption and the change in the solution pH were measured simultaneously. Initially, Br- is irreversibly bound to high-affinity surface sites counterbalanced by the adsorption of H+ from the aqueous phase. The surface speciation is accompanied by the formation of C12TAOH, which in turn results in a significant pH increase in the bulk solution. The net process was found to be strongly exothermic (-280 kJ.mol(-1)), which is indicative of the occurrence of chemisorption. The specific adsorption of Br- is followed by the reversible adsorption of C12TABr to produce a firmly bound monolayer in a head-to-surface arrangement (-53 kJ.mol(-1)). In a relatively narrow range of the surface coverage, various composite structures may develop on the top layer and eventually transform to full-cylindrical surface aggregates. The surface aggregation was found to be reversible, with an enthalpy change of -11 kJ.mol(-1). The importance of the specific binding of Br- to the surface of gold was confirmed by measurement of the initial adsorption of NaBr on the microparticles. The initial adsorption was found to be irreversible, with an enthalpy change of approximately -240 kJ.mol(-1). This process involved the formation of an AuBr-/H+ electric double layer at the gold/water interface, accompanied by a dramatic increase in the solution pH due to the release of a copious amount of OH- in the bulk liquid phase.  相似文献   

6.
We report analyses of electrochemical and spectroscopic measurements on cytochrome P450 BM3 (BM3) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of BM3-DDAB films on silica slides reveal the characteristic low-spin FeIII heme absorption maximum at 418 nm. A prominent peak in the absorption spectrum of BM3 FeII-CO in a DDAB dispersion is at 448 nm; in spectra of aged samples, a shoulder at approximately 420 nm is present. Infrared absorption spectra of the BM3 FeII-CO complex in DDAB dispersions feature a time-dependent shift of the carbonyl stretching frequency from 1950 to 2080 cm(-1). Voltammetry of BM3-DDAB films on graphite electrodes gave the following results: FeIII/II E(1/2) at -260 mV (vs SCE), approximately 300 mV positive of the value measured in solution; DeltaS degrees (rc), DeltaS degrees , and DeltaH degrees values for water-ligated BM3 in DDAB are -98 J mol(-1) K(-1), -163 J mol(-1) K(-1), and -47 kJ mol(-1), respectively; values for the imidazole-ligated enzyme are -8 J mol(-1) K(-1), -73 J mol(-1) K(-1), and -21 kJ mol(-1). Taken together, the data suggest that BM3 adopts a compact conformation within DDAB that in turn strengthens hydrogen bonding interactions with the heme axial cysteine, producing a P420-like species with decreased electron density around the metal center.  相似文献   

7.
朱永春 Cla.  RHJ 《电化学》1995,1(4):427-431
循环伏安量热法研究了欠电位沉积条件下,铜在LiClO4溶液中,铂电极上的电沉积过程,循环伏安热谱图和循环伏安微分热谱图表明,铜离子的电沉积为-放热过程,其中铜-铂(层)相互作用能为-3227.0kJ/mol.沉积铅的电氧化包括了吸热的活性和放热的氧化两个过程,活化过程的焓变为747.0kJ/mol,氧化过程的焓变为-189.9kJ/mol,与热力学数据一致。  相似文献   

8.
The reaction enthalpies for the solution-phase self-assembly of n-alkylphosphonic acids on the surfaces of TiO2 and ZrO2 have been determined using isothermal titration calorimetry at 298 K. The reaction enthalpies were negative (exothermic) for methyl- and n-octylphosphonic acids and positive (endothermic) for n-octadecylphosphonic acid with both metal oxides. The enthalpy/energy analysis showed that the net enthalpy of the formation of self-assembled monolayers (SAMs) at solid-liquid interface can be presented as follows: DeltaHr=-D-(DeltaHsol+DeltaHdil)-(ES-ESAM), where D is the binding energy of the SAM molecules with the solid; DeltaHsol and DeltaHdil are the enthalpies of dissolution and dilution; ES and ESAM are the surface energies of bare solid and SAM, respectively. This equation predicted an increase (and the sign change) of the reaction enthalpy as the alkyl group in n-alkylphosphonic acid increased, which explained the experimental data. Using this equation, the binding energy (D) in the SAMs of n-octyl- and n-octadecylphosphonic acids were estimated: 55+/-5 kJ/mol (for ZrO2) and 58+/-7 kJ/mol (for TiO2).  相似文献   

9.
抗肿瘤药物替加氟与牛血清白蛋白相互作用的热化学研究   总被引:1,自引:1,他引:0  
在298.15 K下, 以等温滴定微量热(ITC)实验数据为依据,根据合理假设和Langmuir结合理论, 应用非线性最小方差拟合方法测定了抗肿瘤药物替加氟(Tegafur)与牛血清白蛋白(BSA)结合过程热力学性质的改变. 研究结果表明, 牛血清白蛋白与替加氟相互作用存在两类结合位点: (1) N=52.00±0.12, K=(9.83±0.13)×104 L/mol, ΔH=(30.10±0.17) kJ/mol>0, ΔS=(196.00±0.65) J/(mol·K)>0, ΔG=(-28.50±0.66) kJ/mol<0, 表现为熵驱动过程, 疏水相互作用为过程的主要推动力; (2) N=86.00±0.14, K=(9.35±0.13)×104 L/mol, ΔH=(-19.80±0.17) kJ/mol<0, ΔS=(28.30±0.50) J/(mol·K)>0, ΔG=(-28.40±0.43) kJ/mol<0, 表现为焓-熵协同过程, 氢键和静电相互作用为过程的主要推动力. 圆二色谱(CD)分析结果表明, 抗肿瘤药物替加氟诱导蛋白质(BSA)二级结构单元的相对含量发生了一定程度的变化.  相似文献   

10.
This paper reports an experimental and computational thermochemical study on 1,3-dimethylbarbituric acid. The value of the standard (p° = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -639.6 ± 1.9 kJ·mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated N(2) stream and a value of the enthalpy of sublimation at T = 298.15 K was derived as 92.3 ± 0.6 kJ·mol(-1). From these results a value of -547.3 ± 2.0 kJ·mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 and G4 levels were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in very good agreement with the experimental value.  相似文献   

11.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

12.
In this work, the aromaticity of pyracylene (2) was investigated from an energetic point of view. The standard enthalpy of hydrogenation of acenaphthylene (1) to acenaphthene (3) at 298.15 K was determined to be minus sign(114.5 +/- 4.2) kJ x mol(-1) in toluene solution and minus sign(107.9 +/- 4.2) kJ x mol(-1) in the gas phase, by combining results of combustion and reaction-solution calorimetry. A direct calorimetric measurement of the standard enthalpy of hydrogenation of pyracylene (2) to pyracene (4) in toluene at 298.15 K gave -(249.9 plus minus 4.6) kJ x mol(-1). The corresponding enthalpy of hydrogenation in the gas phase, computed from the Delta(f)H(o)m(cr) and DeltaH(o)m(sub) values obtained in this work for 2 and 4, was -(236.0 +/- 7.0) kJ x mol(-1). Molecular mechanics calculations (MM3) led to Delta(hyd)H(o)m(1,g) = -110.9 kJ x mol(-1) and Delta(hyd)H(o)m(2,g) = -249.3 kJ x mol(-1) at 298.15 K. Density functional theory calculations [B3LYP/6-311+G(3d,2p)//B3LYP/6-31G(d)] provided Delta(hyd)H(o)m(2,g) = -(244.6 +/- 8.9) kJ x mol(-1) at 298.15 K. The results are put in perspective with discussions concerning the "aromaticity" of pyracylene. It is concluded that, on energetic grounds, pyracylene is a borderline case in terms of aromaticity/antiaromaticity character.  相似文献   

13.
A combined Monte Carlo and quantum mechanical study was carried out to analyze the tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution. Second- and fourth-order M?ller-Plesset perturbation theory calculations indicate that in the gas phase thiol (Pym-SH) is more stable than the thione (Pym-NH) by ca. 8 kcal/mol. In aqueous solution, thermodynamic perturbation theory implemented on a Monte Carlo NpT simulation indicates that both the differential enthalpy and Gibbs free energy favor the thione form. The calculated differential enthalpy is DeltaH(SH)(-->)(NH)(solv) = -1.7 kcal/mol and the differential Gibbs free energy is DeltaG(SH)(-->)(NH)(solv) = -1.9 kcal/mol. Analysis is made of the contribution of the solute-solvent hydrogen bonds and it is noted that the SH group in the thiol and NH group in the thione tautomers act exclusively as a hydrogen bond donor in aqueous solution. The proton transfer reaction between the tautomeric forms was also investigated in the gas phase and in aqueous solution. Two distinct mechanisms were considered: a direct intramolecular transfer and a water-assisted mechanism. In the gas phase, the intramolecular transfer leads to a large energy barrier of 34.4 kcal/mol, passing through a three-center transition state. The proton transfer with the assistance of one water molecule decreases the energy barrier to 17.2 kcal/mol. In solution, these calculated activation barriers are, respectively, 32.0 and 14.8 kcal/mol. The solvent effect is found to be sizable but it is considerably more important as a participant in the water-assisted mechanism than the solvent field of the solute-solvent interaction. Finally, the calculated total Gibbs free energy is used to estimate the equilibrium constant.  相似文献   

14.
The studies regarding the effect of sodium dodecyl sulfate (SDS) on enzyme activities and structures can provide a valuable insight into public health. We have predicted the 3D structure of the brain creatine kinase (CK-BB) with a high resolution and simulated the docking between CK-BB and SDS. The predicted structure had a root mean square deviation of 0.51 Å. The docking between CK-BB and SDS was successful with significant scores (?4.67 kcal/mol, AutoDock4 and ?48.32 kcal/mol, DOCK6). We have also investigated the inactivation by using SDS to study CK-BB’s folding behaviors. The two-phase rate constants as a first-order reaction were measured during inactivation. SDS strongly inhibited the CK-BB activity in a noncompetitive inhibition manner (K i?=?1.22 mM). The tertiary structural change was induced by SDS binding with the exposure of hydrophobic surface. The methyl-β-cyclodextrin was used to strip SDS from the enzyme molecule to reactivate. The changes of thermodynamic parameters for the SDS ligand binding such as enthalpy, Gibbs free energy, and entropy were obtained as ?13?±?7.0 MJ/mol, 8.39 kJ/mol, and ?42.754 kJ/(K mol), respectively. Our study provides important structural information for CK-BB and its interaction with SDS with an insight on its folding and inhibition kinetics.  相似文献   

15.
Metal-assembled resorcinarene-based cages enclose space and entrap organic molecules from water. Addition of cobalt(II) ions to a neutral, aqueous solution of a resorcinarene that has iminodiacetic acids attached to its upper rim results in the formation of cages. These cages not only entrap organic molecules, but they do so in a selective manner. Guests with optimum size, shape, and polarity are preferentially entrapped. For example, selection of p-xylene is twenty thousand times more favorable than that of m-xylene. The enthalpy of resorcinarene deprotonation and cage formation was calculated by performing calorimetry studies and ranged from -305 to -348 kJ mol(-1). The change in enthalpy of guest encapsulation varied by as much as 43 kJ mol(-1). The differences in change in free energy of guest encapsulation varied by -16 kJ mol(-1). The changes in enthalpy and free energy of guest encapsulation were used to calculate the changes in entropy, which ranged from -97 to +37 J mol(-1) K(-1). An enthalpy-entropy compensation of guest encapsulation was observed.  相似文献   

16.
The energetics and structural volume changes after photodissociation of carboxymyoglobin are quantitatively investigated by laser-induced transient grating (TG) and photoacoustic calorimetric techniques. Various origins of the TG signal are distinguished: the phase grating signals due to temperature change, due to absorption spectrum change, and due to volume change. We found a new kinetics of approximately 700 ns (at room temperature), which was not observed by the flash photolysis technique. This kinetics should be attributed to the intermediate between the geminate pair and the fully dissociated state. The enthalpy of an intermediate species is determined to be 61 +/- 10 kJ/mol, which is smaller than the expected Fe-CO bond energy. The volume of MbCO slightly contracts (5 +/- 3 cm(3)/mol) during this process. CO is fully released from the protein by an exponential kinetics from 25 to -2 degrees C. During this escaping process, the volume expands by 14.7 +/- 2 cm(3)/mol at room temperature and 14 +/- 10 kJ/mol is released, which should represent the protein relaxation and the solvation of the CO (the enthalpy of this final state is 47 +/- 10 kJ/mol). A potential barrier between the intermediate and the fully dissociated state is DeltaH(*) = 41.3 kJ/mol and DeltaS(*) = 13.6 J mol(-1) K(-1). The TG experiment under a high wavenumber reveals that the volume expansion depends on the temperature from 25 to -2 degrees C. The volume changes and the energies of the intermediate species are discussed.  相似文献   

17.
The effect of sodium dodecyl sulfate (SDS) on protein loss was studied. Three kinds of human hair were tested by rubbing or immersion in water or immersion in SDS solution, at 25, 40 and 70 degrees C. Under friction, hair treated with SDS solution loses seven times more protein than in water, while by immersion, protein loss is roughly two times higher in SDS than in water. Protein loss increases at higher temperatures. Estimated activation energy values for protein loss by immersion are 69+/-22 kJ mol(-1) for blended brown hair; 40+/-12 kJ mol(-1) for blond hair (tip-end region) and 61+/-4 kJ mol(-1) for blond hair (root-end region) for samples treated in water, while 53+/-8, 7+/-5 and 32+/-8 kJ mol(-1) were the corresponding activation energy values for samples treated in 5% SDS solution. These values indicate that protein loss is mainly a diffusion-controlled process. The more damaged the hair, the lower the activation energy and the higher the protein loss. From these data, it can be estimated that daily care shampooing at room temperature will cause opacity and combing difficulties in 1 year and split ends after 3 years by removal of all cuticle layers.  相似文献   

18.
19.
The interaction of copper with three different chitosans having degrees of deacetylation of 77.5, 81.5, and 86.1%, named C, A, and F, respectively, was followed by the batch method at 298+/-1 K and the values obtained were fitted to a modified Langmuir equation. These interactions were also obtained by calorimetric titration. Experimentally, 50.0 mg of each chitosan was suspended in doubly distilled water at 298.15+/-0.02 K under mechanical turbine stirring. The titration was performed by adding increments of 10 microl of a 0.10 mol dm3 Cu(NO3)2 aqueous solution and the calorimetric isotherms obtained were adjusted to a modified Langmuir equation. From the net thermal effects K and DeltaH values were calculated, also permitting the acquisition of other thermodynamic data for the chitosan-copper interaction at the solid/liquid interface. The exothermic enthalpic values of -45.65+/-1.97, -49.91+/-1.57, and -48.64+/-0.82 kJ mol(-1), for chitosans C, A, and F, respectively, reflect the degree of deacetylation. The spontaneity of the systems is shown by the negative DeltaG values, -36.1+/-0.2, 36.8+/-0.1, and -38.1+/-0.3 kJ mol(-1) for the same sequence of chitosans. The negative entropic values, -34, -44, and -35 J mol(-1) K(-1), are in agreement with an ordering of solvent as the complexation occurred. The intensity of the thermal effects and the thermodynamic data obtained from the copper/chitosan interactions can be associated with the ability of these biopolymers to extract copper from aqueous solutions.  相似文献   

20.
[trans-5,15-Bis(2,7-dihydroxy-1-naphthyl)-2,3,7,8,12,13,17,18-octaethylporphyrinato]zinc(II) (1), a trifunctionalized porphyrin host, was prepared as a receptor for amino acid derivatives, particularly those having a hydrogen-bonding site in the side chain. The free energy changes for the binding of Leu-OMe, Asp-OMe, and Glu-OMe to 1 were -5.8 kcal/mol, -6.6 kcal/mol, and -5.9 kcal/mol, showing a selectivity for Asp-OMe. (1)H NMR titration experiments indicated that three simultaneous attractive interactions, one coordination interaction, and two hydrogen-bonding interactions, are operating in the host-guest complex. The preference for Asp-OMe over Glu-OMe was found to originate from the favorable enthalpy term for Asp-OMe. The free energy change, the enthalpy change, and the entropy change were determined and split into contributions arising from coordination interaction and from hydrogen-bonding interactions by use of reference hosts. Comparison of enthalpy and entropy changes suggests that the host-guest complex becomes more ordered as the number of recognition pairs increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号