首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic beam guide by a one-dimensional magneto-optical trap   总被引:1,自引:0,他引:1  
An atomic beam has been collimated, compressed, and deflected simultaneously by an atomic beam guide based on an inclined one-dimensional magneto-optical trap (1D-MOT). Isotope-selected rubidium atoms were extracted from the naturally-mixed thermal atomic beam with this method. We could manipulate the transverse displacement of the deflected beam precisely by adjusting the current in the copper rods to generate the quadrupole magnetic field. We could extract more than 50% of the incident atoms as a deflection beam when we combined this deflection technique with the atomic deceleration using a broadband spectral light. Received: 10 December 1998 / Published online: 24 June 1999  相似文献   

2.
Miniaturized magnetic guide for neutral atoms   总被引:1,自引:0,他引:1  
We describe the principle and realization of a miniaturized magnetic guide for neutral atoms. The magnetic guide in our experiment is formed by a micrometer-sized current-carrying wire which is attached to a second, thick wire. The conductors are electrically insulated from each other. The combined magnetic field of both conductors provides an approximately linear trapping potential which establishes a magnetic guide along the surface of the thin wire. The miniaturized waveguide is filled with rubidium atoms from a magneto-optical trap (MOT) by first loading the atoms into a spherical magnetic quadrupole trap which is subsequently transformed into the linear potential of the waveguide. As thermal source for Rb atoms we use an alkali metal dispenser which is located close to the center of the MOT. This novel method is compatible with ultrahigh vacuum conditions and we achieved lifetimes of the magnetically trapped atoms up to 100 s. Received: 18 October 1999 / Published online: 24 March 2000  相似文献   

3.
We demonstrate experimentally the continuous and pulsed loading of a slow and cold atomic beam into a magnetic guide. The slow beam is produced using a vapor loaded laser trap, which ensures two-dimensional magneto-optical trapping, as well as cooling by a moving molasses along the third direction. It provides a continuous flux larger than 109 atoms/s with an adjustable mean velocity ranging from 0.3 to 3 m/s, and with longitudinal and transverse temperatures smaller than 100 μK. Up to 3×108 atoms/s are injected into the magnetic guide and subsequently guided over a distance of 40 cm. Received 19 February 2002 Published online 28 June 2002  相似文献   

4.
We demonstrate that transitions between Zeeman-split sublevels of Rb atoms are resonantly induced by the motion of the atoms (velocity: approximately 100 m/s) in a periodic magnetostatic field (period: 1 mm) when the Zeeman splitting corresponds to the frequency of the magnetic field experienced by the moving atoms. A circularly polarized laser beam polarizes Rb atoms with a velocity selected using the Doppler effect and detects their magnetic resonance in a thin cell, to which the periodic field is applied with the arrays of parallel current-carrying wires.  相似文献   

5.
Cold atomic beam from a rubidium funnel   总被引:1,自引:0,他引:1  
We report an experimental demonstration of a continuous, slow and cold beam of rubidium atoms from a two-dimensional magneto-optic trap or atomic funnel. Typically 7.3(7)×108 atoms/s are ejected from the funnel with a variable velocity in the range 2–8 m/s and a temperature of 45–55 μK in the moving frame. This represents the first demonstration of sub-Doppler laser cooling in an atomic beam and temperatures as low as ≈25 μK have been observed. Received: 30 September 1999 / Published online: 5 April 2000  相似文献   

6.
We demonstrate the guiding of neutral atoms by the magnetic fields due to microfabricated current-carrying wires on a chip. Atoms are guided along a magnetic field minimum parallel to and above the current-carrying wires. Two guide configurations are demonstrated: one using two wires with an external magnetic field, and a second using four wires without an external field. These guide geometries can be extended to integrated atom optics circuits, including beam splitters.  相似文献   

7.
Bright atomic beam by a temporal Zeeman acceleration   总被引:1,自引:0,他引:1  
A novel method to produce a slow, monochromatic, and bright pulsed atomic beam from a magneto-optical trap by switching the magnetic field of the trap is proposed. A pulsed lithium atomic beam with a brightness of 1.1×1015 /sr s and a velocity of 13 m/s was produced as an experimental proof of this technique. The conversion efficiency from the trap into the atomic pulse was nearly 100%. Received: 22 October 1999 / Revised version: 15 November 1999 / Published online: 8 March 2000  相似文献   

8.
研究了用于锶原子光晶格光钟原子冷却的塞曼减速器,应用增添补偿线圈的方法可以延长减速器的有效减速距离和增大减速器末端的磁场梯度,进而增加一级冷却俘获锶原子的数目,理论分析采用该方法实现的塞曼减速器较使用单一线圈塞曼减速器可以增加31.17%的俘获原子数目;飞行时间法测量了减速前后原子束中原子的速度分布,原子的最可几速度由380m/s降为43m/s,分布线宽相应变窄。荧光法测量俘获原子数目表明在相同实验条件下,应用补偿线圈后磁光阱俘获原子数目从1.26×106提高到1.81×106,增加30.4%。  相似文献   

9.
A method for focusing neutral atoms based on the light-pressure force in a nonuniform magnetic field is proposed and analyzed. Its particular scheme is realized by means of a two-dimensional magneto-optical trap using a thermal beam of Rb atoms. A feature of this focusing method is the linear dependence of the focal length on the longitudinal velocity of atoms in contrast to the quadratic dependence in the known methods of focusing material-particle beams. The minimum size of the waist of the focused atomic beam is equal to 270 μm. Owing to focusing by means of the two-dimensional magneto-optical trap, the velocity monochromatization of a thermal atomic beam is realized: the width of the distribution of the longitudinal atomic velocities in the beam is reduced from 350 to 60 m/s. Original Russian Text ? P.N. Melentiev, P.A. Borisov, S.N. Rudnev, A.E. Afanasiev, V.I. Balykin, 2006, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 83, No. 1, pp. 16–20.  相似文献   

10.
We report the first experimental realization of magnetic trapping of a sample of cold radicals following multistage Zeeman deceleration of a pulsed supersonic beam. H atoms seeded in a supersonic expansion of Kr have been decelerated from an initial velocity of 520 m/s to 100 m/s in a 12-stage Zeeman decelerator and loaded into a magnetic quadrupole trap by rapidly switching the fields of the trap solenoids.  相似文献   

11.
We have demonstrated the partly directed reflection of a slow cesium atomic beam by using the natural magnetic stray field above a Nd-Fe-B surface. From these experiments we determine the reflectivity and a minimum value for the magnetic stray field directly at the surface. Received: 5 July 1999 / Revised version: 6 October 1999 / Published online: 3 November 1999  相似文献   

12.
Manipulation of cold atoms by an adaptable magnetic reflector   总被引:1,自引:0,他引:1  
Adaptive optics for cold atoms has been experimentally realized by applying a bias magnetic field to a static magnetic mirror. The mirror consist of a 12-mm-diameter piece of commercial videotape, having a sine wave of wavelength 25.4 μm recorded in a single track across its width, curved to form a concave reflector with radius of curvature R=54 mm. We have studied the performance of the mirror by monitoring the evolution of a 24 μK cloud of 85Rb atoms bouncing on it. A uniform static external magnetic field was added to the mirror field causing a corrugated potential from which the atoms bounce with increased angular spread. The characteristic angular distribution of the surface normal is mapped at the peak of the bounce for atoms dropped from a height of R/2 and at the peak of the second bounce for a drop height of R/4. In a second experiment a time-dependent magnetic field was applied and the angular distribution of the cloud was measured as a function of field frequency. In this scheme we demonstrate a corrugated potential whose time-dependent magnitude behaves like a diffraction grating of variable depth. Finally a rotating field was added to generate a corrugated potential that moves with a velocity given by the product of the external field rotation frequency and the videotape wavelength. This travelling grating provides a new method of manipulation as cold atoms are transported across the surface by surfing along the moving wave. Two theoretical methods have been developed to predict the behaviour of atoms reflecting from these stationary, variable magnitude and moving corrugated potentials. A simple analytic theory provides excellent agreement for reflection from a stationary corrugated potential and gives good agreement when extended to the case of a travelling grating. A Monte Carlo simulation was also performed by brute force numeric integration of the equations of motion for atoms reflecting from all three corrugated potential cases. Received: 1 December 1999 / Revised version: 3 February 2000 / Published online: 5 April 2000  相似文献   

13.
We have produced and characterised a slow, bright and intense atomic beam of metastable helium atoms, suitable for atomic physics experiments. The maximum continuous flux attained was 2×1010 atoms/s, while a typical longitudinal peak velocity of the beam was ∼26 m/s with a divergence in the range of 15 mrad to 30 mrad. PACS 32.80.Pj; 32.80.Lg; 39.10.+j  相似文献   

14.
An atom faucet   总被引:3,自引:0,他引:3  
We present a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap (MOT), a thin laser beam extracts a continuous jet of cold rubidium atoms. The jet that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. We also present a simple three dimensional numerical simulation of the atomic motion in the presence of these multiple saturating laser fields combined with the inhomogeneous magnetic field of the MOT. At a pressure of P Rb87 = 10-8 mbar and with a moderate laser power of 10 mW per beam, we generate a flux Φ = 1.3×108 atoms/s with a mean velocity of 14 m/s and a divergence of 10 mrad. Received 13 January 2001  相似文献   

15.
A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while it is guided by a magnetic-field potential. We generate our multimode beam-splitter potential with two current-carrying wires upon a glass substrate combined with an external transverse bias field. The atoms are guided around curves and a beam-splitter region within a 10-cm guide length. We achieve a maximum integrated flux of 1.5x10(5)atoms/s with a current density of 5x10(4)amp/cm (2) in the 100-microm -diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio.  相似文献   

16.
We demonstrate the guiding of neutral atoms with two parallel microfabricated current-carrying wires on the atom chip and a vertical magnetic bias field. The atoms are guided along a magnetic field minimum parallel to the current-carrying wires and confined in the other two directions. We describe in detail how the precooled atoms are efficiently loaded into the two-wire guide. We present a detailed experimental study of the motional properties of the atoms in the guide and the relationship between the location of the guide and the vertical bias field. This two-wire guide with vertical bias field can be used to realize large area atom interferometer.  相似文献   

17.
We have demonstrated that a cobalt single crystal can be used to make a remarkably smooth retro-reflector for cold paramagnetic atoms. The crystal is cut so that its surface lies in the (0001) plane and the atoms are reflected by the magnetic field above the surface due to the self-organized pattern of magnetic domains in the material. We find that the reflectivity for suitably polarized atoms exceeds 90% and may well be unity. We use the angular spread of a reflected atom cloud to measure the roughness of the mirror. We find that the angular variation of the equivalent hard reflecting surface is (3.1±0.3°)rms for atoms dropped onto the mirror from a height of 2 cm. Received: 29 November 1999 / Revised version: 24 February 2000 / Published online: 5 April 2000  相似文献   

18.
Atom lithography with a cold, metastable neon beam   总被引:1,自引:0,他引:1  
We study different aspects of atom lithography with metastable neon atoms. Proximity printing of stencil masks is used to test suitable resists that are sensitive to the internal energy of the atoms, including dodecanethiols on gold and octadecyltrichlorosilanes grown on a SiO2 surface. As an example of patterning the atomic beam with laser light, we create parallel line structures on the surface with a periodicity of half the laser wavelength by locally de-exciting the atoms in a standing quenching wave. Received: 29 June 1999 / Revised version: 30 August 1999 / Published online: 10 November 1999  相似文献   

19.
We demonstrate an atom laser using all-optical techniques. A Bose-Einstein condensate of rubidium atoms is created by direct evaporative cooling in a quasistatic dipole trap realized with a single, tightly focused CO2-laser beam. An applied magnetic field gradient allows the formation of the condensate in a field-insensitive m(F)=0 spin projection only, which suppresses fluctuations of the chemical potential from stray magnetic fields. A collimated and monoenergetic beam of atoms is extracted from the Bose-Einstein condensate by continuously lowering the dipole trapping potential in a controlled way to form a novel type of atom laser.  相似文献   

20.
We study propagation of cold atoms along a curved atomic guide following an arbitrary trajectory in space. Transverse energy of the atomic beam increases as the beam propagates along the guide. Our model explains results of recent experiments on optical and magnetic guiding of cold atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号