首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For a general gauge-theoretical formulation of gravitational interactions, we analyze the first algebraic steps towards a quantization via BRST ghost operators, replacing the Lagrange multipliers of the classical Hamiltonian constraints. From the nilpotency of the BRST charge, we deduce new restrictions on torsion and curvature of Yang-Mills type metric-affine models.  相似文献   

2.
The one-dimensional gravitational system consists ofN parallel sheets of constant mass density. The sheets move perpendicular to their surface solely under their mutual gravitational attraction. When a pair has an encounter, they simply pass through each other. In this paper I consider the motion of a single sheet in an equilibrium ensemble. Under the assumption that the times separating encounters are random, I show that the acceleration and velocity(A, V) of a labeled sheet form a Markovian pair. Further, I prove that, in the limit of largeN, (1)the(A, V) process is deterministic, (2) the(A, V) process obeys Vlasov dynamics, and (3) that scaled fluctuations in(A, V) comprise a diffusion which obeys a generalized Ornstein-Uhlenbeck process with time-dependent drift and diffusion tensors.  相似文献   

3.
We review how one can construct a deconstructed gravity by a transverse latticification of 5D General Relativity. The obtained theory is a multigravity theory, with link fields that are explicitly constructed out of the metric. We also discuss the spectrum of the theory at the level of the linearized theory.  相似文献   

4.
A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe.The energy density of ghost dark energy,which originates from Veneziano ghost of Quantum Chromodynamics(QCD),in a time dependent background,can be written in the form,ρD=αH + βH~2 where H is the Hubble parameter.We investigate the generalized ghost dark energy(GGDE) model in the setup of loop quantum Cosmology(LQC) and Galileon Cosmology.We study the cosmological implications of the models.We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology.  相似文献   

5.
In the existing expositions of the Károlyházy model, quantum mechanical uncertainties are mimicked by classical spreads. It is shown how to express those uncertainties through entities of the future unified theory of general relativity and quantum theory.  相似文献   

6.
Recently,the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations.Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties.One interesting form related to the inverse variational problem is the logarithmic Lagrangian,which has a number of motivating features related to the Li′enard-type and Emden nonlinear differential equations.Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians.In this communication,we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians.One interesting consequence concerns the emergence of an extra pressure term,which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field.The case of the stellar halo of the Milky Way is considered.  相似文献   

7.
A new kind of gauge theory is introduced, where the minimal coupling and corresponding covariant derivatives are defined in the space of functions pertaining to the functional Schrödinger picture of a given field theory. While, for simplicity, we study the example of a \(\mathcal{U}(1)\) symmetry, this kind of gauge theory can accommodate other symmetries as well. We consider the resulting relativistic nonlinear extension of quantum mechanics and show that it incorporates gravity in the (0+1)-dimensional limit, similar to recently studied Schrödinger-Newton equations. Gravity is encoded here into a universal nonlinear extension of quantum theory. A probabilistic interpretation (Born’s rule) holds, provided the underlying model is scale free.  相似文献   

8.
We propose a simple optical approach for the convolutional pre-processing of stellar specklegrams in the shift-and-add (SAA) method. It uses an incoherent optical processing, where a speckle pattern on a displaying device is re-imaged and a point-spread-function of the re-imaging system is used as the convolution kernel. This approach is suitable for use in the real-time SAA-system recently proposed. Experimental results using observational stellar specklegrams displayed on a cathode-ray-tube-monitor are reported to demonstrate that the optical pre-processing improves the signal-to-noise ratio of the final image.  相似文献   

9.
We discuss the stability of semiclassical gravity solutions with respect to small quantum corrections by considering the quantum fluctuations of the metric perturbations around the semiclassical solution. We call the attention to the role played by the symmetrized 2-point quantum correlation function for the metric perturbations, which can be naturally decomposed into two separate contributions: intrinsic and induced fluctuations. We show that traditional criteria on the stability of semiclassical gravity are incomplete because these criteria based on the linearized semiclassical Einstein equation can only provide information on the expectation value and the intrinsic fluctuations of the metric perturbations. By contrast, the framework of stochastic semiclassical gravity provides a more complete and accurate criterion because it contains information on the induced fluctuations as well. The Einstein–Langevin equation therein contains a stochastic source characterized by the noise kernel (the symmetrized 2-point quantum correlation function of the stress tensor operator) and yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. These points are illustrated with the example of Minkowski space-time as a solution to the semiclassical Einstein equation, which is found to be stable under both intrinsic and induced fluctuations.  相似文献   

10.
11.
In this paper, if the condition of variation δt=0 is satisfied, the higher-order Lagrangian equations and higher-order Hamilton's equations, which show the consistency with the results of traditional analytical mechanics, are obtained from the higher-order Lagrangian equations and higher-order Hamilton's equations. The results can enrich the theory of analytical mechanics.  相似文献   

12.
In this paper, we investigated a new anisotropic solution for the strange star model in the context of 5D Einstein-Gauss-Bonnet (EGB) gravity. For this purpose, we used a linear equation of state (EOS), in particular pr=βρ+γ, (where β and γ are constants) together with a well-behaved ansatz for gravitational potential, corresponding to a radial component of spacetime. In this way, we found the other gravitational potential as well as main thermodynamical variables, such as pressures (both radial and tangential) with energy density. The constant parameters of the anisotropic solution were obtained by matching a well-known Boulware-Deser solution at the boundary. The physical viability of the strange star model was also tested in order to describe the realistic models. Moreover, we studied the hydrostatic equilibrium of the stellar system by using a modified TOV equation and the dynamical stability through the critical value of the radial adiabatic index. The mass-radius relationship was also established for determining the compactness and surface redshift of the model, which increases with the Gauss-Bonnet coupling constant α but does not cross the Buchdahal limit.  相似文献   

13.
讨论了重力场中质点系统的运动积分及其中的Runge-Lenz型运动积分与分离变量方法中分离系数之间的关系,也讨论了系统的可积性以及它与运动积分之间的关系等问题.  相似文献   

14.
15.
Gravitational-electromagnetic entities geons are singularity-free solutions of the Einstein-Maxwell equations. These structures in cylindrical symmetry are considered here through the noncompactified Kaluza-Klein theory which describes geometrically the gravitation field and its sources.  相似文献   

16.
17.
We determine the gravitational response to a diffuse source, in a locally de Sitter background, of a class of theories which modify the Einstein-Hilbert action by adding a term proportional to an inverse power of the Ricci scalar. We find a linearly growing force which is not phenomenologically acceptable.  相似文献   

18.
证明了高阶振幅压缩的概念可以应用于q变形代数的光场。q变形算符aN 的正交归一本征态的压缩特点由这些态的内部奇偶结构决定。破坏这种奇偶结构将得到具有新压缩特点的光场。  相似文献   

19.
天体光谱处理中的一项基本任务是对大量的恒星光谱进行自动分类。到目前为止,恒星光谱的分类工作多是基于一维光谱数据。该研究打破传统的天体光谱数据处理流程,提出了基于二维恒星光谱分类的方法。在LAMOST(the large sky area multi-object fiber spectroscopic telescope)的数据处理流程中,所有的一维光谱都是由二维光谱抽谱、合并得来。二维光谱是由光谱仪产生的图像,包括蓝端图像和红端图像。基于LAMOST二维光谱数据,提出了特征融合卷积神经网络(FFCNN)分类模型,用于二维恒星光谱的分类。该模型是一个有监督的算法,通过两个CNN模型分别提取蓝端图像和红端图像的特征,然后将二者进行融合得到新的特征,再利用CNN对新特征进行分类。所使用的数据全部来源于LAMOST,我们在LMOST DR7中随机选择了一批源,然后获得了它们的二维光谱。一共有14 840根F,G和K型恒星的二维光谱用于FFCNN模型的训练,其中包括7 420根蓝端光谱和7 420根红端光谱。由于三类恒星光谱的数量并不均衡,在训练的过程中分别为每类恒星光谱设置了不同权重,防止模型出现分类失衡现象。同时,为了加快模型收敛,对二维光谱数据采用Z-score归一化处理。此外,为了充分利用所有样本,提高模型的可靠度,采用五折交叉验证的方法验证模型。3 710根二维光谱用作测试集,使用准确率、精确率、召回率和F1-score来对FFCNN模型的性能进行评价。实验结果显示,F,G和K型恒星的精确率分别达到87.6%,79.2%和88.5%,而且它们超过了一维光谱分类的结果。实验结果证明基于FFCNN的二维恒星光谱分类是一种有效的方法,它也为恒星光谱的处理提供了新的思路和方法。  相似文献   

20.
We analyze locally anisotropic configurations modeled by anholonomic frames with associated nonlinear connections in general relativity, affine–Poincarè and/or de Sitter gauge gravity and Kaluza–Klein theories. A suitable geometrical formalism for theories with higher order anisotropies and non compactified extra dimensions is introduced. We give a mostly self–containing review of some aspects of gauge models of gravity and discuss their anholonomic generalizations and the conditions of equivalence with the Einstein gravity in arbitrary dimensions. New classes of cosmological solutions describing Friedmann–Robertson–Walker like universes with resolution ellipsoid or torus symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号