首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylenediaminetetracetic acid (EDTA), which was co-disposed with Pu at several US Department of Energy sites, has been reported to enhance the solubility and transport of Pu. It is generally assumed that this enhanced transport of Pu in geologic environments is a result of complexation of Pu(IV) with EDTA. However, the fundamental basis for this assumption has never been fully explored. Whether EDTA can mobilize Pu(IV) in geologic environments is dependent on many factors, chief among them are not only the complexation constants of Pu with EDTA and dominant oxidation state and the nature of Pu solids, but also (1) the complexation constants of environmentally important metal ions (e.g., Fe, Al, Ca, Mg) that compete with Pu for EDTA and (2) EDTA interactions with the geomedia (e.g., adsorption, biodegradation) that reduce effective EDTA concentrations available for complexation. Extensive studies over a large range of pH values (1 to 14) and EDTA concentrations (0.0001 to 0.01 mol⋅L−1) as a function of time were conducted on the solubility of 2-line ferrihydrite (Fe(OH)3(s)), PuO2(am) in the presence of different concentrations of Ca ions, and mixtures of PuO2(am) and Fe(OH)3(s). The solubility data were interpreted using Pitzer’s ion-interaction approach to determine/validate the solubility product of Fe(OH)3(s), the complexation constants of Pu(IV)-EDTA and Fe(III)-EDTA, and to determine the effect of EDTA in solubilizing Pu(IV) from PuO2(am) in the presence of Fe(III) compounds and aqueous Ca concentrations. Predictions based on these extensive fundamental data show that environmental mobility of Pu as a result of Pu(IV)-EDTA complexation as reported/implied in the literature is a myth rather than the reality. The data also show that in geologic environments where Pu(III) and Pu(V) are stable, the EDTA complexes of these oxidation states may play an important role in Pu mobility.  相似文献   

2.
The solubility of crystalline Ni(OH)2 was studied in solutions of 0.01M NaC104 with pH ranging from 7 to near 14. Equilibrium was approached both from over-and undersaturation, and the equilibration times extended from 3 to 90 days. The solubility of Ni(OH)2(c) in the pH range of approximately 7 to 11.3 was effectively modeled by including aqueous Ni2+ and NiOH+ species. Values of the logarithm of the thermodynamic equilibrium constants for the reactions [Ni(OH)2(c) ⇌ Ni2+ + 2OH-] and [Ni2+ + OH- ⇌ Ni(OH)+] were determined to be -16.1±0.1 and 5.65 ± 0.10, respectively. These data, in conjunction with Pitzer ion interaction parameters given in the literature, were used to model the reported solubilities of Ni(OH)2(c) in chloride, sodium acetate, and potassium chloride solutions. The model predictions for these systems were in excellent agreement with the experimental data from the literature.  相似文献   

3.
Fe2O(SO4)2 is a secondary product of the decomposition of FeSO4⋅H2O. Part I of this study presents results on the synthesis of Fe2O(SO4)2 in gaseous environment containing either low or high concentration of oxygen. In this paper the existence of differences between the structures of Fe2O(SO4)2 and Fe2(SO4)3 is proved on the basis of a detailed thermal study of Fe2O(SO4)2 upon dynamic heating (differential thermal analysis) and upon isothermal heating (thermal-analytic balance) in various gaseous environments as well as by presenting kinetic data on the processes of decomposition of both compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The objectives of this study were to address uncertainties in the solubility product of (UO2)3(PO4)2⋅4H2O(c) and in the phosphate complexes of U(VI), and more importantly to develop needed thermodynamic data for the Pu(VI)-phosphate system in order to ascertain the extent to which U(VI) and Pu(VI) behave in an analogous fashion. Thus studies were conducted on (UO2)3(PO4)2⋅4H2O(c) and (PuO2)3(PO4)2⋅4H2O(am) solubilities for long-equilibration periods (up to 870 days) in a wide range of pH values (2.5 to 10.5) at fixed phosphate concentrations of 0.001 and 0.01 M, and in a range of phosphate concentrations (0.0001–1.0 M) at fixed pH values of about 3.5. A combination of techniques (XRD, DTA/TG, XAS, and thermodynamic analyses) was used to characterize the reaction products. The U(VI)-phosphate data for the most part agree closely with thermodynamic data presented in Guillaumont et al.,(1) although we cannot verify the existence of several U(VI) hydrolyses and phosphate species and we find the reported value for formation constant of UO2PO4 is in error by more than two orders of magnitude. A comprehensive thermodynamic model for (PuO2)3(PO4)2⋅4H2O(am) solubility in the H+-Na+-OH-Cl-H2PO4-HPO2−4-PO3−4-H2O system, previously unavailable, is presented and the data shows that the U(VI)-phosphate system is an excellent analog for the Pu(VI)-phosphate system.  相似文献   

5.
Solubility studies on UO2(c), precipitated at 90°C from low-pH U(IV) solutions, were conducted under rigidly controlled redox conditions maintained by EuCl2 as a function of pH and from the oversaturation direction. Samples were equilibrated for 24 days at 90°C and then for 1 day at 22°C. X-ray diffraction (XRD) analyses of the solid phases, along with the observed solubility behavior, identified UO2(c) as the dominant phase at pH1.2 and UO2(am) as the dominant phase at pH1.2. The UV-Vis-NIR spectra of the aqueous phases showed that aqueous uranium was present in the tetravalent state. Our ability to effectively maintain uranium in the tetravalent state during experiments and the recent availability of reliable values of Pitzer ion-interactionparameters for this system have helped to set reliable upper limits for the log K o value of –60.2 + 0.24 for the UO2(c) solubility [UO2(c) + 2H2O U4+ + 4OH] and of >–11.6 for the formation of U(OH)4(aq) [U4++ 4H2O U(OH)4(aq) + 4H+]  相似文献   

6.
The oxidation of Fe(II) with H2O2 has been measured in NaCl and NaClO4 solutions as a function of pH, temperature T (K) and ionic strength (M, mol-L–1). The rate constants, k (M–1-sec–1), d[Fe(II)]/DT=-k[Fe(II)][2O2]at pH=6.5 have been fitted to equations of the formlog k = log k0+ AI 1/2+BI+CI 1/2/T Where log k0=15.53-3425/T in water; A=–2.3, –1.35; B=0.334, 0.180; and C=391, 235, respectively, for NaCl (=0.09) and NaClO4 ( =0.08). Measurements made in NaCl solutions with added anions yield rates in the order B(OH) 4 >HCO 3 >ClO 4 >Cl>NO 3 >SO 4 2– and are attributed to the relative strength of the interactions of Fe2+ or FeOH+ with these anions. The FeB(OH) 4 + species is more reactive while the FeCO 3 0 , FeCl+, FeNO 3 + and FeSO 4 0 species are less reactive than the FeOH+ ion pair. The general trend is similar to our earlier studies of the oxidation of Fe(II) with O2 except for B(OH) 4 . The effect of pH on the logk was found to be a quadratic function of the concentration of H+ or OH from pH=4 to 8. These results have been attributed to the different rate constants for Fe2+ (k0) and FeOH+ (k1) which are related to the measured k by, k=k0Fe + k1FeOH, where i is the molar fraction of species i. The rates increase due to the greater reactivity of FeOH+ compared to Fe2+. k0 is independent of composition and ionic strength but k1 is a function of ionic strength and composition due to the interactions of FeOH+ with various anions.  相似文献   

7.
Solubility studies of TcO2· xH2O(am) have been conducted as a function of H+ concentration from 1 × 10– 5 to 6 M HCl and as a function of chloride concentration from 1 × 10– 3 to 5 M NaCl. These experiments were conducted under carefully controlled reducing conditions such that the preponderance of Tc present in solution is in the reduced oxidation state and was determined to be Tc(IV) by XANES analysis. The aqueous species and solid phases were characterized using a combination of techniques including thermodynamic analyses of solubility data, XRD, and XANES, EXAFS, and UV-vis spectroscopies. Chloride was found to significantly affect Tc(IV) concentrations through (1) the formation of Tc(IV) chloro complexes [i.e., TcCl4(aq) and TcCl6 2 –] and a stable compound [data suggests this compound to be TcCl4(am)] in highly acidic and relatively concentrated chloride solutions, and (2) its interactions with the positively charged hydrolyzed Tc(IV) species in solutions of relatively low acidity and high chloride concentrations. A thermodynamic model was developed that included hitherto unavailable chemical potentials of the Tc(IV)–chloro species and Pitzer ion-interaction parameters for Tc(IV) hydrolyzed species with bulk electrolyte ions used in this study. The thermodynamic model presented in this paper is consistent with the extensive data reported in this study and with the reliable literature data and is applicable to a wide range of H+ and Cl concentrations and ionic strengths.  相似文献   

8.
The main objective of this study was to develop a thermodynamic model for predicting Cr(III) behavior in concentrated NaOH and in mixed NaOH–NaNO3 solutions for application to developing effective caustic leaching strategies for high-level nuclear waste sludges. To meet this objective, the solubility of Cr(OH)3(am) was measured in 0.003 to 10.5 m NaOH, 3.0 m NaOH with NaNO3 varying from 0.1 to 7.5 m, and 4.6 m NaNO3 with NaOH varying from 0.1 to 3.5 m at room temperature (22 ± 2°C). A combination of techniques, X-ray absorption spectroscopy (XAS) and absorptive stripping voltammetry analyses, were used to determine the oxidation state and nature of aqueous Cr. A thermodynamic model, based on the Pitzer equations, was developed from the solubility measurements to account for dramatic increases in aqueous Cr with increases in NaOH concentration. The model includes only two aqueous Cr species, Cr(OH) 4 and Cr2O2(OH) 4 (although the possible presence of a small percentage of higher oligomers at >5.0 m NaOH cannot be discounted) and their ion–interaction parameters with Na+. The logarithms of the equilibrium constants for the reactions involving Cr(OH) 4 [Cr(OH)3(am) + OH Cr(OH) 4 ] and Cr2O2(OH) 4 2– [2Cr(OH)3(am) + 2OH Cr2O2(OH) 4 2– + 2H2O] were determined to be –4.36 ± 0.24 and –5.24 ± 0.24, respectively. This model was further tested and provided close agreement between the observed Cr concentrations in equilibrium with Cr(OH)3(am) in mixed NaOH–NaNO3 solutions and with high-level tank sludges leached with and primarily containing NaOH as the major electrolyte.  相似文献   

9.
[Fe(N2H4)2(CH3COO)2] was synthesised and characterized for the first time by chemical analysis, magnetic measurements, electronic and IR spectral studies. Its thermal reactivity was ascertained by thermogravimetric (TG) and derivative thermogravimetric (DTG) techniques and it has been concluded that unlike some other metal carboxylate hydrazinates, it does not show any autocatalytic behaviour. The decomposition was also subjected to kinetic analysis using the equations of Coats-Redfern and Horowitz-Metzger by the method of weighted least-squares.  相似文献   

10.
Summary Crystals of monoclinic Fe2(SeO4)3 were synthesized under hydrothermal conditions. The structure was determined by single crystal X-ray methods and refined in space group P21/n with 2 646 independent reflections (sin /<0.7 Å–1) toR=0.033,R w=0.037:a=8.530 (2) Å,b=8.888 (2) Å,c=11.952 (2) Å, =91.13 (1)°,V=906.0 Å3,Z=4. The crystal structure is isotypic with the monoclinic modification of Fe2(SO4)3, containing two different Fe(III) and three Se(VI) atomic positions. The FeO6 and SeO4 polyhedra are only slightly distorted, the mean Fe-O bond lengths are 1.986 Å and 2.004 Å, the average distances within the SeO4 tetrahedra are each 1.628 Å. The isolated FeO6 octahedra only share corners with SeO4 tetrahedra to build a framework structure.
Synthese und Kristallstruktur von monoklinem Fe2(SeO4)3
Zusammenfassung Kristalle von monoklinem Fe2(SeO4)3 wurden unter Hydrothermalbedingungen gezüchtet. Die Struktur wurde mit Einkristall-Röntgenmethoden bestimmt und in der Raumgruppe P21/n mit 2 646 unabhängigen Reflexen (sin /<0.7Å–1) aufR=0.033,R w=0.037 verfeinert:a=8.530(2) Å,b=8.888(2) Å,c=11.952(2) Å, =91.13(1)°,V=906.0 Å3,Z=4. Die Kristallstruktur ist isotyp mit der monoklinen Modifikation von Fe2(SO4)3, sie enthält zwei unterschiedliche Fe(III) und drei Se(VI) Atompositionen. Die FeO6-Polyeder sind nur gering verzerrt, die mittleren Fe-O Bindungslängen sind 1.986 Å und 2.004 Å, die mittleren Abstände in den SeO4-Tetraedern sind jeweils 1.628 Å. Die isolierten FeO6-Oktaeder sind nur über gemeinsame Ecken mit SeO4-Tetraedern verbunden, wobei eine Gerüststruktur entsteht.
  相似文献   

11.
The compound, (NH4)[VO(O2)2(NH3)], thermally decomposes to ammonium metavanadate, which then decomposes to vanadium pentoxide. Using a heating rate of 5 deg·min–1, the first decomposition step occurs between 74° and 102°C. The transformation degree dependence of the activation energy (-E) is shown to follow a decreasing convex form, indicating that the first decomposition step is a complex reaction with a change in the limiting stage of the reaction. Infrared spectra indicated that the decomposition proceeds via the gradual reduction of the ratio of the (NH4)2O to V2O5 units from the original 11 ratio in ammonium metavanadate, which may be written as (NH4)2O·V2O5, to V2O5.The assistance of Professor A. M. Heyns (University of Pretoria) and Professor K. L. Range (University of Regensburg) is gratefully acknowledged as well as the financial assistance of the University of Pretoria and the FRD.  相似文献   

12.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

13.
Summary The atomic arrangements within the structures of NH4Ag2(AsS2)3 [a=9.557(2),b=7.414(2),c=16.29(1) Å; =91.30(5)°; space group P21/n;R(F)=0.042] and (NH4)5Ag16(AsS4)7 [a=64.49(6),b=6.471(2),c=12.806(4) Å; =95.47(5)°; space group Cc;R(F)=0.073] were determined from single crystal X-ray data. In these two compounds the coordination spheres of the Ag atoms are quite different. In NH4Ag2(AsS2)3, the Ag atoms exhibit a [2+2]- and a [3+1]-coordination to S atoms up to 3.3 Å and with Ag atom neighbours at 2.93 Å and 3.05 Å respectively. In (NH4)5Ag16(AsS4)7, the Ag atoms are — with one exception- [4] coordinated (Ag-S<3.3 Å) and the distances to further Ag atom neighbours are greater than 3.1 Å. NH4Ag2(AsS2)3 represents an ordered cyclo-thioarsenate(III) with three-membered As3S6 rings, (NH4)5Ag16(AsS4)7 a neso-thioarsenate(V) with two split Ag atom positions. Both compounds were synthesized under moderate hydrothermal conditions.
Synthesen und Kristallstrukturen von NH4Ag2(AsS2)3 und (NH4)5Ag16(AsS4)7 mit einer Diskussion über (NH4)Sx Polyeder
Zusammenfassung Die Atomanordnungen in den Strukturen von NH4Ag2(AsS2)3 [a=9.557(2),b=7.414(2),c=16.29(1) Å; =91.30(5)°; Raumgruppe P21/n;R(F)=0.042] und (NH4)5Ag16(AsS4)7 [a=64.49(6),b=6.471(2),c=12.806(4) Å; =95.47(5)°; Raumgruppe Cc;R(F)=0.073] wurden anhand von röntgenographischen Einkristalldaten bestimmt. In diesen beiden Verbindungen sind die Koordinationsverhältnisse um die Ag-Atome sehr unterschiedlich. In NH4Ag2(AsS2)3 besitzen die Ag-Atome bis 3.3 Å eine [2+2]- und [3+1]-Koordination durch S-Atome mit weiteren Ag-Atomen bei 2.93 Å und 3.05 Å. In (NH4)5Ag16(AsS4)7 sind die Ag-Atome mit einer Ausnahme [4]-koordiniert (Ag-S < 3.3 Å), und die Abstände zu weiteren Ag-Atomen sind größer als 3.1 Å. NH4Ag2(AsS2)3 stellt ein geordnetes Cyclothioarsenat(III) mit dreigliedrigen As3S6-Ringen dar, (NH4)5Ag16(AsS4)7 ein Nesothioarsenat (V) mit zwei aufgespaltenen Ag-Positionen. Beide Verbindungen wurden unter mäßigen Hydrothermalbedingungen synthetisiert.
  相似文献   

14.
A new method using acetylsalicylic acid (aspirin) modified SiO2 nanoparticles (nanometer SiO2-aspirin) as a solid-phase extractant (SPE) has been developed for the preconcentration of trace amounts of Fe(III) prior to their determination by inductively coupled plasma optical emission spectrometry. The preconcentration conditions of analytes were investigated, including the pH value, the shaking time, the mass of sorbent, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the sorption capacity of nanometer SiO2-aspirin was found to be 1.28 mmol g−1. The preconcentration factor is 50. The detection limit (3σ) for Fe(III) was 0.49 ng mL−1. The method was validated by analyzing two certified reference materials (GBW 08301, river sediment and GBW 08303, polluted farming soil), and the results obtained are in good agreement with standard values. The method was also applied to the determination of trace Fe(III) in biological and water samples with satisfactory results. Correspondence: Xiangbing Zhu, Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China  相似文献   

15.
Interaction energies between two similar plane parallel double layers for (NH4)2Fe(SO4)2 or (NH4)2Cu(SO4)2 type complex salt electrolytes at positive surface potential were expanded in a power series and accurate numeral results were given for 0.1 ≤ y e  < y 0 ≤ 20. The general expressions were given for the interaction energies of A ν +B ν′ +Cν? type complex salt electrolytes at y > 0. The interaction energies for simple salts NaCl, CaCl2, Na2SO4, FeCl3, Na3PO4, Mg3(PO4)2, Al2(SO4)3, and complex salts (NH4)2Fe(SO4)2 or (NH4)2Cu(SO4)2 at y 0 = 1 were compared. There was hardly difference between these simple salts and this complex salt for the interaction energies. The interaction energy for complex salt (NH4)2Fe(SO4)2 was close to that for simple salt Na3PO4.

Supplemental files are available for this article. Go to the publisher's online edition of the Journal of Dispersion Science and Technology to view the free supplemental file.  相似文献   

16.
The three copper(II)-arsenates were synthesized under hydrothermal conditions; their crystal structures were determined by single-crystal X-ray diffraction methods:Cu3(AsO4)2-III:a=5.046(2) Å,b=5.417(2) Å,c=6.354(2) Å, =70.61(2)°, =86.52(2)°, =68.43(2)°,Z=1, space group ,R=0.035 for 1674 reflections with sin / 0.90 Å–1.Na4Cu(AsO4)2:a=4.882(2) Å,b=5.870(2) Å,c=6.958(3) Å, =98.51(2)°, =90.76(2)°, =105.97(2)°,Z=1, space group ,R=0.028 for 2157 reflections with sin / 0.90 Å–1.KCu4(AsO4)3:a=12.234(5) Å,b=12.438(5) Å,c=7.307(3) Å, =118.17(2)°,Z=4, space group C2/c,R=0.029 for 1896 reflections with sin / 0.80 Å–1.Within these three compounds the Cu atoms are square planar [4], tetragonal pyramidal [4+1], and tetragonal bipyramidal [4+2] coordinated by O atoms; an exception is the Cu(2)[4+1] atom in Cu3(AsO4)2-III: the coordination polyhedron is a representative for the transition from a tetragonal pyramid towards a trigonal bipyramid. In KCu4(AsO4)3 the Cu(1)[4]O4 square and the As(1)O4 tetrahedron share a common O—O edge of 2.428(5) Å, resulting in distortions of both the CuO4 square and the AsO4 tetrahedron. The two Na atoms in Na4Cu(AsO4)2 are [6] coordinated, the K atom in KCu4(AsO4)3 is [8] coordinated by O atoms.Die drei Kupfer(II)-Arsenate wurden unter Hydrothermalbedingungen gezüchtet und ihre Kristallstrukturen mittels Einkristall-Röntgenbeugungsmethoden ermittelt:Cu3(AsO4)2-III:a = 5.046(2) Å,b = 5.417(2) Å,c = 6.354(2) Å, = 70.61 (2)°, = 86.52(2)°, = 68.43(2)°,Z = 1, Raumgruppe ,R = 0.035 für 1674 Reflexe mit sin / 0.90 Å–1.Na4Cu(AsO4)2:a = 4.882(2) Å,b = 5.870(2) Å,c = 6.958(3) Å, = 98.51(2)°, = 90.76(2)°, = 105.97(2)°,Z = 1, Raumgruppe ,R = 0.028 für 2157 Reflexe mit sin / 0.90 Å–1.KCu4(AsO4)3:a = 12.234(5) Å,b = 12.438(5) Å,c = 7.307(3) Å, = 118.17(2)°,Z = 4, Raumgruppe C2/c,R = 0.029 für 1896 Reflexe mit sin / 0.80 Å–1.Die Cu-Atome in diesen drei Verbindungen sind durch O-Atome quadratisch planar [4], tetragonal pyramidal [4 + 1] und tetragonal dipyramidal [4 + 2]-koordiniert; eine Ausnahme ist das Cu(2)[4 + 1]-Atom in Cu3(AsO4)2-III: Das Koordinationspolyeder stellt einen Vertreter des Übergangs von einer tetragonalen Pyramide zu einer trigonalen Dipyramide dar. In KCu4(AsO4)3 haben das Cu(1)[4]O4-Quadrat und das As(1)O4-Tetraeder eine gemeinsame O—O-Kante von 2.428(5) Å, was eine Verzerrung der beiden Koordinationsfiguren CuO4-Quadrat und AsO4-Tetraeder bedingt. Die zwei Na-Atome in Na4Cu(AsO4)3 sind durch O-Atome [6]-koordiniert, das K-Atom in KCu4(AsO4)3 ist [8]-koordiniert.
Zur Kristallchemie dreier Kupfer (II)-Arsenate: Cu3(AsO4)2-III, Na4Cu(AsO4)2 und KCu4(AsO4)3
  相似文献   

17.
Abstract

The ligand 4-Cl-2,6-bis(benzimidazol-2′-yl)-pyridine(Cl-bzimpy;H2L) acts as a bidentate when coordinated with transition metal ions and the complex [Fe(Cl-bzimpy)2](ClO4)2 was isolated as a solid. The protonation constants (logK). The free ligand and the complex were evaluated in 30:70 (v/v) H2O:EtOH at room temperature and ionic strength of 0.13M (KCl). Coordination of the ligand to the metal ion leads to an increase of the acidity of the imino-hydrogen of the benzimidazole group. Deprotonation leads to a change in the spin-state (to the low-spin state; HS → LS transition) of the complex associated with a decrease in the spin-crossover equilibrium constant (Ksc). An opposite shift of spin-state is observed when HClO4 is added to the complex solution, thus showing the reversibility of the process.  相似文献   

18.
The electronic structure of Rh2Cl2(CO)4 in the ground state is computed using the recently proposed PSIBMOL (Pseudo-potentials + IBMOL/H) formalism. The drawing of the total and differential isoelectronic contour maps supports the idea that there does not exist any rhodium-rhodium bond in such a binuclear complex, the origins of the preferred bent conformation having to be found elsewhere.  相似文献   

19.
A new computer program has been developed for the calculation of pH, pOH, hydroxide ion concentration m OH, species distribution coefficients i, ionic activity coefficients i ionic strength I, buffer capacity , solubility product K s0, and the two dissociation constants, K b1 and K b2, corresponding, respectively, to first and second dissociation steps of Ca(OH)2 in aqueous solution. Previously developed methodology, for the calculation of pH, i, i I, and parameters of pH buffer solutions, starting from the corresponding acidity constants, has been adapted for the case of aqueous Ca(OH)2 solutions, for which the pertinent stoichiometric relationships are different from those applicable to mixtures of acids and their salts. The results show that, contrary to what is currently assumed, the first dissociation is far from complete. Values are given for the concentrations and activities of species Ca(OH)2(aq), Ca(OH)+(aq), and Ca2+ (aq) in saturated calcium hydroxide solutions at 25°C.  相似文献   

20.
The rates of oxidation of Fe(II) in NaCl and NaClO 4 solutions were studied as a function of pH (6 to 9), temperature (5 to 25°C), and ionic strength (0 to 6m). The rates are second order with respect to [H+] or [OH] and independent of ionic strength and temperature. The overall rate of the oxidation is given by
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号