首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
硅片类型和多孔硅结构的多样性影响了多孔硅表面的激光解吸/离子化质谱(DIOS)(无辅助基质的激光解吸/电离飞行时间质谱(LDI-TOF-MS))数据的重复性和靶的耐储时间。本工作通过在多孔硅的表面淀积金纳米颗粒并将其作为目标靶来增强软物质分子如聚乙二醇和多肽的激光解吸/电离质谱信号。纳米金的淀积钝化了多孔硅表面的Si-H活性基团,增加了靶的耐储时间。用场发射扫描电镜表征了多孔硅淀积金纳米颗粒前后的形貌,用X射线能量色散光谱法分析金的百分含量,结果表明其含量随沉积时间的延长而增加。激光解吸/电离质谱信号的增强可能是由多孔硅及其支持的金纳米颗粒的光学和物理性质引起的,该类型的样品靶在激光解吸/电离飞行时间质谱的应用上结合了多孔硅和金纳米颗粒的双重优势。  相似文献   

2.
Infrared soft laser desorption/ionization was performed using a 2.94 µm Er : YAG laser and a commercial reflectron time-of-flight mass spectrometer. The instrument was modified so that a 337 nm nitrogen laser could be used concurrently with the IR laser to interrogate samples. Matrix-assisted laser desorption/ionization (MALDI), laser desorption/ionization and desorption/ionization on silicon with UV and IR lasers were compared. Various target materials were tested for IR soft desorption ionization, including stainless steel, aluminum, copper, silicon, porous silicon and polyethylene. Silicon surfaces gave the best performance in terms of signal level and low-mass interference. The internal energy resultant of the desorption/ionization was assessed using the easily fragmented vitamin B12 molecule. IR ionization produced more analyte fragmentation than UV-MALDI analysis. Fragmentation from matrix-free IR desorption from silicon was comparable to that from IR-MALDI. The results are interpreted as soft laser desorption and ionization resulting from the absorption of the IR laser energy by the analyte and associated solvent molecules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminum films which were sputtered onto the tung-sten/silicon substrates. A selective chemical etching was used to penetrate the barrier layer at the bottom of the alumina channels before electrodeposition, which enables direct elec-trical and chemical contact with the underside substrate electrode. The as-deposited sam-ples were annealed at 450 oC in vacuum. Scanning electron microscopy revealed that the nanorods were dense and compact with diameter of about 100 nm, length of approximate 1 μm, and the aspect ratio of 10. X-ray diffraction, micro-Raman spectroscopy, and highresolution transmission electron microscopy showed that chalcopyrite polycrystalline struc-ture and high purity CuInSe2 nanorods were obtained. The grain size was large in the rod axial direction. Energy-dispersive X-ray spectroscopy showed the composition was nearly stoichiometric. The energy band gap of this nanorod arrays was analyzed by fundamental absorption spectrum and was evaluated to be 0.96 eV.  相似文献   

4.
Chemically modified silicon nanoparticles were applied for the laser desorption/negative ionization of small acids. A series of substituted sulfonic acids and fatty acids was studied. Compared to desorption ionization on porous silicon (DIOS) and other matrix-less laser desorption/ionization techniques, silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry allows for the analysis of acids in the negative ion mode without the observation of multimers or cation adducts. Using SPALDI, detection limits of many acids reached levels down to 50 pmol/μl. SPALDI of fatty acids with unmodified silicon nanoparticles was compared to SPALDI using the fluoroalkyl silylated silicon powder, with the unmodified particles showing better sensitivity for fatty acids, but with more low-mass background due to impurities and surfactants in the untreated silicon powder. The fatty acids exhibited a size-dependent response in both SPALDI and unmodified SPALDI, showing a signal intensity increase with the chain length of the fatty acids (C12-C18), leveling off at chain lengths of C18-C22. The size effect may be due to the crystallization of long chain fatty acids on the silicon. This hypothesis was further explored and supported by SPALDI of several, similar sized, unsaturated fatty acids with various crystallinities. Fatty acids in milk lipids and tick nymph samples were directly detected and their concentration ratios were determined by SPALDI mass spectrometry without complicated and time-consuming purification and esterification required in the traditional analysis of fatty acids by gas chromatography (GC). These results suggest that SPALDI mass spectrometry has the potential application in fast screening for small acids in crude samples with minimal sample preparation.  相似文献   

5.
We investigated a variant of desorption/ionization on porous silicon (DIOS) mass spectrometry utilizing an aqueous suspension of either porous silica gel or porous alumina (pore size of 60 and 90 A, respectively). Laser desorption/ionization (LDI) from samples directly deposited on a stainless steel surface without any inorganic substrates was also achieved. Synthetic peptides designed to cover large sequence diversity constituted our model compounds. Sample preparation, including material conditioning, peptide solubilization, and deposition protocol onto standard matrix-assisted laser desorption/ionization (MALDI) probe, as well as ionization source tuning were optimized to perform sensitive reproducible LDI analyses. The addition of either a cationizing agent or an alkali metal scavenger to the sample suspension allowed modification of the ionization output. Comparing hydrophilic silica gel to hydrophobic reversed-phase silica gel as well as increasing material pore size provided further insights into desorption/ionization processes. Furthermore, mixtures of peptides were analyzed to probe the spectral suppression phenomenon when no interfering organic matrix was present. The results gathered from synthetic peptide cocktails indicated that LDI mass spectrometry on silica gel or alumina constitutes a promising complementary method to MALDI in proteomics for peptide mass fingerprinting.  相似文献   

6.
Tsao CW  Lin CH  Cheng YC  Chien CC  Chang CC  Chen WY 《The Analyst》2012,137(11):2643-2650
Matrix-assisted laser desorption/ionization mass spectrometry is an established soft ionization method that is widely applied to analyze biomolecules. The UV-absorbing organic matrix is essential for biomolecule ionization; however, it also creates matrix background interference, which results in problematic analyses of biomolecules of less than 700 Da. Therefore, this study investigates hydrophilic, hydrophobic cationic, anionic and immobilized metal ion surface chemical modifications to advance nanostructured silicon mass spectrometry performance (nSi-MS). This investigation provides information required for a possible novel mass spectroscopy that combines surface-enhanced and nanostructured silicon surface-assisted laser desorption/ionization mass spectrometry for the selective detection of specific compounds of a mixture.  相似文献   

7.
The study of low molecular weight compounds by matrix-assisted laser desorption/ionization (MALDI) is difficult because of the presence of ions originating from the matrix in the low-m/z range. In order to resolve these problems, new matrix-free approaches were developed based on laser desorption/ionization from the surface of various materials such as graphite and porous silicon. Our work involves the use of 'desorption ionization on porous silicon mass spectrometry' (DIOS-MS) in the negative ion mode to study fatty acid compounds. The potential of the DIOS-MS technique is shown and an insight into the ionization mechanism provided.  相似文献   

8.
A low molecular mass polyester was analyzed by desorption/ionization on porous silicon (DIOS) mass spectrometry. The results were compared with those of matrix-assisted laser desorption ionization (MALDI) mass spectrometry using matrixes of alpha-cyano-4-hydroxycinnamic acid (CHCA) and 10,15,20-tetrakis(pentafluorophenyl)porphyrin (F20TPP). The CHCA matrix was not suitable for characterization of low molecular mass components of the polyester because the matrix-related ions interfered with the component ions. On the other hand, the F20TPP matrix showed no interference because no matrix-related ions appeared below m/z 822. However, the solvent selection for determining optimal conditions of sample preparation was limited, because F20TPP does not dissolve readily in any of the available organic solvents. In the DIOS spectra, the polymer ions were observed at high sensitivity without a contaminating ion. No matrix is needed for DIOS spectra of low molecular mass polyesters, facilitating sample preparation and selectivity of a precursor ion in post-source decay measurements.  相似文献   

9.
We report a general, simple, and inexpensive approach to pattern features of self-assembled monolayers (SAMs) on silicon and gold surfaces using porous anodic alumina films as templates. The SAM patterns, with feature sizes down to 30 nm and densities higher than 10(10)/cm(2), can be prepared over large areas (>5 cm(2)). The feature dimensions can be tuned by controlling the alumina template structure. These SAM patterns have been successfully used as resists for fabricating gold and silicon nanoparticle arrays on substrates by wet-chemical etching. In addition, we show that arrays of gold features can be patterned with 10-nm gaps between the dots.  相似文献   

10.
Desorption/ionization on porous silicon-mass spectrometry (DIOS-MS) is a novel soft ionization MS technique that does not require any matrix reagent, ideally resulting in fewer obstructive peaks in the lower mass region. In this study, the etching conditions of porous silicon spots as an ionization platform of DIOS-MS were investigated for determining the molecular weight distribution (MWD) of polymers. To evaluate the accuracy of DIOS mass spectra observed using porous silicon spots prepared under various etching conditions, a certified polystyrene (PS) standard sample with an average molecular weight of ca. 2400 was used as a model sample. By optimizing the etching conditions, the MWD of the PS sample could be accurately observed by DIOS-MS using both p-type and n-type porous silicon spots. Especially, in the case of a suitable n-type spot, an accurate peak distribution with very fewer obstructive background peaks could be observed using the minimum laser power, comparable to the conventional matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS).  相似文献   

11.
High surface area of porous silicon drives desorption of intact molecules   总被引:1,自引:1,他引:0  
The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Si(n)(+) and OSiH(+)). A threshold laser energy for DIOS is observed (10 mJ/cm(2)), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed that correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example that fits into this mechanism is the surface of silicon nanowires, which has a high surface energy and concomitantly requires lower laser energy for analyte desorption.  相似文献   

12.
The suitability of atmospheric pressure desorption/ionization on silicon mass spectrometry (AP-DIOS-MS) and matrix-assisted laser desorption ionization mass spectrometry (AP-MALDI-MS) for the identification of amphetamines and fentanyls in forensic samples was studied. With both ionization techniques, the mass spectra recorded showed abundant protonated molecules, and the background did not disturb the analysis. The use of tandem mass spectrometry (MS/MS) allowed unambiguous identification of the amphetamines and fentanyls. AP-DIOS-MS/MS and AP-MALDI-MS/MS were also successfully applied to the identification of authentic compounds from drug seizures. Common diluents and tablet materials did not disturb the analysis and compounds were unequivocally identified. The limits of detection (LODs) for amphetamines and fentanyls with AP-DIOS-MS/MS were 1-3 pmol, indicating excellent sensitivity of the method. The LODs with AP-MALDI-MS/MS were about 5-10 times higher.  相似文献   

13.
This work demonstrates that the desorption/ionization on self-assembled monolayer surface (DIAMS) mass spectrometry, a recent matrix-free laser desorption/ionization (LDI) method based on an organic target plate, is as statistically repeatable and reproducible as matrix assisted laser desorption ionization (MALDI) and thin gold film-assisted laser desorption/ionization (TGFA-LDI) mass spectrometries. On lipophilic DIAMS of target plates with a mixture of glycerides, repeatability/reproducibility has been estimated at 15 and 30% and the relative detection limit has been evaluated at 0.3 and 3 pmol, with and without NaI respectively. Salicylic acid and its d(6)-isomer analysis confirm the applicability of the DIAMS method in the detection of compounds of low molecular weight.  相似文献   

14.
Xu S  Pan C  Hu L  Zhang Y  Guo Z  Li X  Zou H 《Electrophoresis》2004,25(21-22):3669-3676
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.  相似文献   

15.
本文总结了多种构筑硅纳米结构的方法, 综述了近年来利用硅纳米结构提高表面辅助激光解吸/电离质谱(SALDI-MS)性能的研究工作, 展望了利用功能化的硅纳米结构表面进一步提高激光解吸/电离(LDI)效率的前景.  相似文献   

16.
基质辅助激光解吸电离质谱(MALDI-MS)作为一种有力的分析手段,在生物分子分析中有着广泛的应用,但很难应用于分子量小于500的待测物的分析。该文利用聚多巴胺修饰还原法制备了核壳结构的聚苯乙烯-马来酸酐共聚物@银纳米壳层(PSMA@Ag)复合微球。采用傅立叶红外光谱法验证了聚多巴胺(PDA)的成功修饰。结合扫描电子显微镜(SEM)和紫外-可见光谱(UV-Vis)分析结果,发现Ag纳米壳层成功地包覆在PSMA微球的表面。将制备的PSMA@Ag复合微球作为辅助基质直接应用于MALDI-MS,成功地从0.5μL待测物样品中检测到2 pmol脯氨酸(M_w=115)和1 pmol丝氨酸(M_w=105)。研究结果证明PSMA@Ag微球对MALDI的离子化过程有促进作用,为解决MALDI-MS在分析小分子待测物时背景噪声过大,信号无法分辨的问题提供了一个有效途径。  相似文献   

17.

Rationale

A novel matrix‐free laser desorption/ionization method based on porous alumina membranes was developed. The porous alumina membranes have a two‐dimensional (2D) ordered structure consisting of closely aligned straight through holes of sub‐micron in diameter that are amenable to mass production by industrial fabrication processes.

Methods

Considering a balance between the ion generating efficiency and the mechanical strength of the membranes, the typical values for the hole diameter, open aperture ratio and membrane thickness were set to 200 nm, 50% and 5 μm, respectively. The membranes were coated with platinum on a single side that was exposed to the laser. Evaluation experiments were conducted on the feasibility of this membrane structure for an ionization method using a single peptide and mixed peptides and polyethylene glycol samples and a commercial matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometer in the positive ion mode.

Results

Results showed a softness of ionization and no sweet spot nature. The capillary action of the through holes with very high aspect ratio enables several loading protocols including sample impregnation from the surface opposite to the laser exposure side.

Conclusions

The feasibility study indicates that the through hole porous alumina membranes have several advantages in terms of usefulness over the conventional surface‐assisted laser desorption ionization (SALDI) methods. The proposed novel ionization method is termed Desorption Ionization Using Through Hole Alumina Membrane (DIUTHAME).
  相似文献   

18.
Desorption/ionization on porous silicon (DIOS) is a form of laser desorption mass spectrometry that allows for the direct mass analysis of a variety of analytes without the addition of organic matrix. Protocols are described for the direct analysis of exocrine tissue and single neurons using DIOS-MS. The atrial gland of Aplysia californica was blotted on to porous silicon and analyzed with DIOS-MS in the range m/z 1000-4000. The ability to culture invertebrate neurons directly on porous silicon is also presented. Isolated bag cells regenerated neuronal processes in culture on porous silicon. DIOS-MS allowed the direct detection of the peptides contained in individual cultured neurons indicating that with appropriate protocols, DIOS can be used with biological samples with considerable thickness.  相似文献   

19.
In this paper, mesoporous tungsten titanate (WTiO) with different nano-pore structures was utilized as matrix for the analysis of short peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Effect of characteristic features of mesoporous matrices on laser desorption/ionization process was investigated. Experiments showed that the ordered two-dimensional and three-dimensional mesoporous matrices were superior in performance to the non-ordered WTiO matrix. The dramatic enhancement of signal sensitivity by the ordered mesoporous matrices can be reasonably attributed to the ordered structure, which facilitated the understanding on structure-function relationship in mesoporous cavity for laser desorption process of adsorbed biomolecules. With the ordered mesoporous matrix, the short peptides are successfully detected. The presence of trace alkali metal salt effectively increased the analyte ion yields and the MALDI-TOFMS using the inorganic mesoporous matrices displayed a high salt tolerance. The developed technique also showed a satisfactory performance in peptide-mapping and amino-acid sequencing analysis.  相似文献   

20.
In matrix-assisted laser desorption/ionization (MALDI), the true molecular structures of some analytes are not represented by the observed ions due to a redox reaction. In earlier reports, electron transfer from analyte to chemical matrix has been proposed for the oxidation of ferrocene derivatives in MALDI. To address such a redox phenomenon in laser desorption/ionization processes, two ferrocene derivatives, FcCH2CH2Fc and FcCH2NMe2 [Fc:(CsHs)Fe(CsH4)], were analyzed by a matrix-free method, desorption/ionization on porous silicon (DIOS). The oxidized species, Fc+CH2NMe2 and FcCH2CH2Fc+, were detected in the DIOS mass spectra. The results suggested that electron transfer from the analytes to the sample target occurs during the ionization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号