首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this review is to present the most relevant work on retention modeling in micellar liquid chromatography. First, physico-chemical models explaining the variation of capacity factors with one or more experimental variables (such as micellar concentration, organic modifier concentration, and pH) will be shown. Secondly, studies carried out to model the solute retention in micellar liquid chromatography by means of empirical equations will be presented, and finally new trends in this area will be introduced.  相似文献   

2.
The possibilities of micellar liquid chromatography for evaluating distribution coefficients are discussed. Determination of solute-micelle association constants and distribution coefficients of solutes between stationary-aqueous, stationary-micellar and aqueous-micellar phases is described. Application of the calculation of distribution coefficients to the study of the retention mechanism of solutes in the chromatographic system and prediction of separation selectivity is also presented.  相似文献   

3.
The two concepts of micelle formation (pseudo-phase and mass-action) could be the basis of retention models in micellar liquid chromatography (MLC). The separation of 4-hydroxybenzoic acid esters and seven polyaromatic hydrocarbons were performed to study the repeatability of retention factor in MLC. The full two factor experimental design was used for studying the dependence of retention factor variance on mobile phase composition (sodium dodecylsulfate, 1-butanol). The experimentally observed heteroscedasticity and perturbations after linearization were taken into account by using statistical weights obtained on the basis of errors propagation law and the modeling of retention by non-weighted and weighted least squares method was performed. The mechanistical retention models based on pseudo-phase and mass-action concepts of micelle formation were compared by fitting quality and prediction capability and high robustness of bilogarithmic dependence was observed. The significance of retention factor heteroscedasticity for retention hydrophobicity relationships was shown.  相似文献   

4.
Retention indices in micellar electrokinetic chromatography   总被引:1,自引:0,他引:1  
The use of retention indices in micellar electrokinetic chromatography (MEKC) is evaluated both from a theoretical and a practical point of view. Fundamental equations for the determination of retention indices in MEKC are described, showing that retention indices are independent of the surfactant concentration. Possibilities as well as limitations of different homologous series as reference standards are described. In addition, the practical application of retention indices for identification, investigation of solute-micelle interactions, characterization and classification of pseudo-stationary phases and determination of solute lipophilicity are discussed.  相似文献   

5.
Summary Multi-layer feed-forward neural networks trained with an error back-propagation algorithm have been used to model retention behaviour of liquid chromatography as a function of the composition of the mobile phases. Conventional hydro-organic and micellar mobile phases were considered. Accurate retention modelling and prediction have been achieved using mobile phases defined by two, three and four parameters. With micellar mobile phases, the parameters involved included the concentrations of surfactant and organic modifier, pH and temperature. It is shown that neural networks provide a competitive tool to model varied inherent nonlinear relationships of retention behaviour with respect to the mobile phase parameters. The soft models defined by the weights of the networks are capable of accommodating all types of linear and nonlinear relationships, neural networks being specially useful when the relationships between retention behaviour and the mobile phase parameters are unknown. However, to train neural networks more experimental points than with hard-modelling methods are required, hence the use of the networks is recommended only for those cases where adequate theoretical or empirical models do not exist.  相似文献   

6.
Broad peaks are obtained when purely aqueous micellar phases are used in micellar liquid chromatography (MLC). The causes of reduced efficiency in MLC are investigated. Slow solute mass-transfer kinetics between micelles, the aqueous phase and the surfactant covered stationary phase are the origins of the efficiency loss. Knox plots show that the reduced efficiency comes from A term increase and, for lipophilic solutes, A and C terms increases. Surfactant adsorption reduces the pore volume and surface area of the stationary phase changing the flow anisotropy (A term). The surfactant adsorbed layer slows down the mass transfer (C term). Three ways for efficiency loss remediation are known: flow-rate reduction, temperature increase and alcohol addition. Alcohols are known to change the micelle structure and to increase the kinetics of micelle formation-destruction. It is shown that the ratio of the alcohol chain length to surfactant alkyl chain length, Cn, OH/Cnm surf, should be equal or higher than 1/3 to produce the best efficiency enhancements in MLC. Also, the volume of alcohol to be added is not absolute but relative to the surfactant concentration. The alcohol to surfactant concentration ratio should be kept constant. Temperature increases and especially alcohol additions reduce the retention factors. Thermodynamic and kinetics of the micellar exchanges in MLC cannot be dissociated.  相似文献   

7.
Summary It is shown theoretically that when the concentration of organic solvent in the mobile phase increases, or solute size decreases, log k values of small solutes in reversed-phase liquid chromatography (RPLC) will tend to have a minimum value called the convergence point. A theoretical model for evaluating the convergent coordinates of small solutes is presented by using a stoichiometric displacement model for retention (SMDR). The physical meaning of the coordinates of each kind of convergence are also elucidated. The convergence points have either two-dimensional coordinates with a common ordinate (the logarithm of the phase ratio of the column, log ) or threedimensional corrdinates with two common axes: — log and the logarithm of the molar concentration of the pure displacing agent in mobile phase, log aD. The other axis relates to the nature of the solutes, such as carbon number of a homolog, van der Waal's surface area, hydrophobic fragment constant etc. for the latter and those and/or concentration axis for the former. The model was tested with published data and found to give a good fit.  相似文献   

8.
9.
10.
Micellar liquid chromatography (MLC) is a reversed-phase liquid chromatographic (RPLC) mode with mobile phases containing a surfactant (ionic or non-ionic) above its critical micellar concentration (CMC). In these conditions, the stationary phase is modified with an approximately constant amount of surfactant monomers, and the solubilising capability of the mobile phase is altered by the presence of micelles, giving rise to diverse interactions (hydrophobic, ionic and steric) with major implications in retention and selectivity. From its beginnings in 1980, the technique has evolved up to becoming a real alternative in some instances (and a complement in others) to classical RPLC with hydro-organic mixtures, owing to its peculiar features and unique advantages. This review is aimed to describe the retention mechanisms (i.e. solute interactions with both stationary and mobile phases) in an MLC system, revealed in diverse reports where the retention behaviour of solutes of different nature (ionic or neutral exhibiting a wide range of polarities) has been studied in a variety of conditions (with ionic and non-ionic surfactants, added salt and organic solvent, and varying pH). The theory is supported by several mechanistic models that describe satisfactorily the retention behaviour, and allow the measurement of the strength of solute-stationary phase and solute-micelle interactions. Suppression of silanol activity, steric effects in the packing pores, anti-binding behaviour, retention of ionisable compounds, compensating effect on polarity differences among solutes, and the contribution of the solvation parameter model to elucidate the interactions in MLC, are commented.  相似文献   

11.
Summary Optical isomers of substituted binaphthyl, compounds such as 2,2-dihydroxy-1,1-dinaphthyl and 1,1-binaphthyl-2,2-diyl hydrogenphosphate are, separated by HPLC using micellar bile-salt mobile phases. Operating conditions which affect the optical resolution of these enantiomers are examined. The largest separation factor achieved for these enantiomers is 2.74. The elution order of the latter enantiomers changes with mobile phase composition.  相似文献   

12.
This paper is devoted to application of ionic liquids as surfactants in LC of organic compounds, derivatives of 1,4‐thiosemicarbazides. According to HPLC requirements the most advantageous conditions such as transparency for ultraviolet light, low CMC, additional inorganic salt additives, and appropriate organic solvent were established. The CMC was determined using conductivity measurements. Suitability of two different stationary phases: RP‐C18 and cyanopropyl bonded phase was examined under micellar conditions. Chosen ionic liquid surfactant was compared to common traditional amphiphilic reagent – SDS. Elaborated on chromatographic micellar conditions were tested as a pilot technique for prediction of distribution coefficients of organic analytes in ionic liquid‐based aqueous two‐phase system.  相似文献   

13.
14.
An analytical procedure has been developed for the analysis of benzoic acid, p-hydroxybenzoic acid, methyl-, ethyl-, propyl-, isopropyl-, and butyl esters of p-hydroxybenzoic acid by micellar liquid chromatography. After dilution in n-propanol the sample was directly injected onto a Lichrosorb ODS, 5 microm (250 x 4.6 mm ID) column and eluted with aqueous 2% Brij-35 adjusted to pH 3.0 with phosphoric acid:propanol (80:20 v/v) at a flow rate of 1 mL min(-1) and UV detection at 254 nm. A linear calibration curve was obtained simultaneously for each component in the range of 50-500 microg mL(-1) for benzoic acid and 5-150 microg mL(-1) for the other components; detection limits were within 25-250 ng mL(-1) corresponding to 125-1250 pg per injection (5 microL). The reproducibility in terms of average peak area and average retention time was obtained with coefficients of variation (CV) of 1.2% and 0.5%. The method was applied to analysis of these compounds in cosmetics (shampoos, hand lotions, creams, and bath foam) and food samples.  相似文献   

15.
T. Takeuchi  T. Miwa 《Chromatographia》1996,43(3-4):143-148
Summary The retention behavior of dansyl amino acids in micellar liquid chromatography has been examined by using ionexchange-induced stationary phases. Several parameters affected the retention of the analytes, including the type and concentration of micellar agent and modifier ion and the concentration of acetonitrile in the mobile phase. The order of elution of dansyl amino acids obtained with the micellar mobile phase was very different from that observed in conventional reversed-phase liquid chromatography. Fluorescence intensities of some dansyl amino acids were enhanced by the micellar mobile phase.  相似文献   

16.
Summary A procedure has been developed for the determination, in <12 min, of several stimulants (amphetamine, ephedrine, methoxyphenamine, phenylephrine and phenylpropanolamine) in spiked urine samples after direct injection, using a hybrid micellar mobile phase of 0.15 M sodium dodecyl sulfate and 3% pentanol at pH 7, on a C18 column with UV detection. Recoveries were 94–102% and limits of detection 4.5 ng·mL−1 for methoxyphenamine and 0.39 μg·mL−1 for amphetamine, similar to those obtained for aqueous solutions. Linearity reached 0.99 and intermediate precision was <8.4 and 5.3, for the two different concentrations tested.  相似文献   

17.
This review article describes some general comments on micellar electrokinetic chromatography (MEKC) from the viewpoint of pseudo-stationary phases and presents a compiled list of surfactants used for MEKC, prepared from published papers. We tried to give comments on some typical surfactants from the practical point of view.  相似文献   

18.
The simultaneous isocratic separation of a mixture of five phenolic acids and four flavonoids (two important groups of natural polyphenolic compounds with very different polarities) was investigated in three different RPLC modes using a hydro‐organic mobile phase, and mobile phases containing SDS at concentrations below and above the critical micellar concentration (submicellar LC and micellar LC (MLC), respectively). In the hydro‐organic mode, methanol and acetonitrile; in the submicellar mode methanol; and in the micellar mode, methanol and 1‐propanol were examined individually as organic modifiers. Regarding the other modes, MLC provided more appropriate resolutions and analysis time and was preferred for the separation of the selected compounds. Optimization of separation in MLC was performed using an interpretative approach for each alcohol. In this way, the retention of phenolic acids and flavonoids were modeled using the retention factors obtained from five different mobile phases, then the Pareto optimality method was applied to find the best compatibility between analysis time and quality of separation. The results of this study showed some promising advantages of MLC for the simultaneous separation of phenolic acids and flavonoids, including low consumption of organic solvent, good resolution, short analysis time, and no requirement of gradient elution.  相似文献   

19.
Summary The relationship between the logarithmic capacity factor measured in reversed-phase liquid chromatography and the operating conditions including the mobile phase composition and the column temperature is investigated. The strategy described herein can offer the possibility to predict the retention of polycyclic aromatic hydrocarbons without any experiments and standard materials, by utilizing equations describing the relationships between retention, temperature, mobile phase composition and physicochemical properties of the solutes previously stored in the program of the microcomputer-assisted retention prediction system.This concept is one of the most promising techniques for the optimization of the separation conditions in reversed-phase liquid chromatography.  相似文献   

20.
A simple method to identify and determine six sulfonamides (sodium sulfacetamide, sulfamethizole, sulfaguanidine, sulfamerazine, sulfathiazole and sulfamethoxazole) in milk by micellar liquid chromatography (MLC) is reported. The assay makes use of a precolumn diazotisation-coupling derivatisation including the formation of an azo dye that can be detected at 490 nm. Furthermore, the use of MLC as an analytical tool allows the direct injection of non-purified samples. The separation was performed with an 80 mM SDS-8.5% propanol eluent at pH 7. Analysis times are below 16 min with a complete resolution. Linearities (r > 0.9999), as well as intra- and inter-day precision (below 2.7%), were studied in the validation of the method. The limits of detection and quantification ranged from approximately 0.72 to 0.94 and 2.4 to 3.1 ng mL−1, respectively. The detection limit was below the maximum residue limit established by the European Community. Finally, recoveries in spiked milk samples were in the 83-103% range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号