首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient absorption spectroscopy with subpicosecond laser excitation is used to probe the primary photoinduced processes in two ester analogues (linear and cyclic) of the Photoactive Yellow Protein (PYP) chromophore in solution. The PYP chromophore is the thioester derivative of the deprotonated trans-4-hydroxycinnamic acid. The results found for the ester analogues are compared to those previously obtained for the deprotonated trans-4-hydroxycinnamic acid and its amide and thioester derivatives. Special attention is paid to the role of the electron donor–acceptor character of the chromophore substituents and of the molecular flexibility on the excited-state relaxation pathway and kinetics. Solvent viscosity and polarity effects on the kinetics are also analyzed. Two hypothetical relaxation pathways involving a one-bond flip mechanism are proposed to explain the observation of a transient species in the course of the excited-state relaxation of the analogues bearing the stronger electron-acceptor substituents. In the first one, the intermediate is described as a perp ground state, whereas the second one involves a twisted excited state where the conformation of the ethylenic bond deviates from 90°. In both cases, the relaxation of the transient state may lead or not to the cis isomer.  相似文献   

2.
The ultrafast excited-state dynamics underlying the receptor state photorecovery is resolved in the M100A mutant of the photoactive yellow protein (PYP) from Halorhodospira halophila. The M100A PYP mutant, with its distinctly slower photocycle than wt PYP, allows isolation of the pB signaling state for study of the photodynamics of the protonated chromophore cis-p-coumaric acid. Transient absorption signals indicate a subpicosecond excited-state proton-transfer reaction in the pB state that results in chromophore deprotonation prior to the cis-trans isomerization required in the photorecovery dynamics of the pG state. Two terminal photoproducts are observed, a blue-absorbing species presumed to be deprotonated trans-p-coumaric acid and an ultraviolet-absorbing protonated photoproduct. These two photoproducts are hypothesized to originate from an equilibrium of open and closed folded forms of the signaling state, I(2) and I(2)'.  相似文献   

3.
We have studied the photoinduced trans/cis isomerization of the protonated form of p-hydroxycinnamic thiophenyl ester, a model chromophore of the photoactive yellow protein (PYP), in crystalline phase, by both fluorescence and infrared spectroscopies. The conversion from trans to cis configuration is revealed by a shift of the fluorescence peak and by inspection of the infrared maker bands. The crystal packing apparently stabilizes the cis photoproduct, suggesting different environmental effects from the solvent molecules for this model chromophore in liquid solutions or from the amino acid residues for the PYP chromophore.  相似文献   

4.
We previously reported that two analogues of the Photoactive Yellow Protein chromophore, trans-p-hydroxycinnamic acid (pCA(2-)) and its amide derivative (pCM-) in their deprotonated forms, undergo a trans-cis photoisomerization whereas the thioester derivative, trans-p-hydroxythiophenyl cinnamate (pCT-), does not. pCT- is also the only one to exhibit a short-lived intermediate on its excited-state deactivation pathway. We here further stress the existence of two different relaxation mechanisms for these molecules and examine the reaction coordinates involved. We looked at the effect of the solvent properties (viscosity, polarity, solvation dynamics) on their excited-state relaxation dynamics, probed by ultrafast transient absorption spectroscopy. Sensitivity to the solvent properties is found to be larger for pCT- than for pCA(2-) and pCM-. This difference is considered to reveal that either the relaxation pathway or the reaction coordinate is different for these two classes of analogues. It is also found to be correlated to the electron donor-acceptor character of the molecule. We attribute the excited-state deactivation of analogues bearing a weaker acceptor group, pCA(2-) and pCM-, to a stilbene-like photoisomerization mechanism with the concerted rotation of the ethylenic bond and one adjacent single bond. For pCT-, which contains a stronger acceptor group, we consider a photoisomerization mechanism mainly involving the single torsion of the ethylenic bond. The excited-state deactivation of pCT- would lead to the formation of a ground-state intermediate at the "perp" geometry, which would return to the initial trans conformation without net isomerization.  相似文献   

5.
The sub-millisecond protonation dynamics of the chromophore in S65T mutant form of the green fluorescent protein (GFP) was tracked after a rapid pH jump following laser-induced proton release from the caged photolabile compoundo-nitrobenzaldehyde. Following a jump in pH from 8 to 5 (which is achieved within 2 μs), the fluorescence of S65T GFP decreased as a single exponential with a time constant of ∼90 μs. This decay is interpreted as the conversion of the deprotonated fluorescent GFP chromophore to a protonated non-fluorescent species. The protonation kinetics showed dependence on the bulk viscosity of the solvent, and therefore implicates bulk solvent-controlled protein dynamics in the protonation process. The protonation is proposed to be a sequential process involving two steps: (a) proton transfer from solvent to the chromophore, and (b) internal structural rearrangements to stabilize a protonated chromophore. The possible implications of these observations to protein dynamics in general is discussed  相似文献   

6.
The photoactive yellow protein (PYP) is a bacterial photosensor containing a para-coumaryl thioester chromophore that absorbs blue light, initiating a photocycle involving a series of conformational changes. Here, we present computational studies to resolve uncertainties and controversies concerning the correspondence between atomic structures and spectroscopic measurements on early photocycle intermediates. The initial nanoseconds of the PYP photocycle are examined using time-dependent density functional theory (TDDFT) to calculate the energy profiles for chromophore photoisomerization and proton transfer, and to calculate excitation energies to identify photocycle intermediates. The calculated potential energy surface for photoisomerization matches key, experimentally determined, spectral parameters. The calculated excitation energy of the photocycle intermediate cryogenically trapped in a crystal structure by Genick et al. [Genick, U. K.; Soltis, S. M.; Kuhn, P.; Canestrelli, I. L.; Getzoff, E. D. Nature 1998, 392, 206-209] supports its assignment to the PYP(B) (I(0)) intermediate. Differences between the time-resolved room temperature (298 K) spectrum of the PYP(B) intermediate and its low temperature (77 K) absorbance are attributed to a predominantly deprotonated chromophore in the former and protonated chromophore in the latter. This contrasts with the widely held belief that chromophore protonation does not occur until after the PYP(L) (I(1) or pR) intermediate. The structure of the chromophore in the PYP(L) intermediate is determined computationally and shown to be deprotonated, in agreement with experiment. Calculations based on our PYP(B) and PYP(L) models lead to insights concerning the PYP(BL) intermediate, observed only at low temperature. The results suggest that the proton is more mobile between Glu46 and the chromophore than previously realized. The findings presented here provide an example of the insights that theoretical studies can contribute to a unified analysis of experimental structures and spectra.  相似文献   

7.
The solvatochromic behavior of the green fluorescence protein (GFP) chromophore (p-hydroxybenzylideneimidazolone, p-HBDI) and its derivatives (p-methoxybenzylideneimidazolone, p-MeOBDI, and N-methyl-p-hydroxybenzylideneimidazolonium iodide, p-HBDIMe+) was studied using UV-vis-absorption spectroscopy in a wide array of solvents. The relative contribution of specific (polarity) vs nonspecific (hydrogen-bonding) solvation to the absorbance spectra was studied. On the basis of these data, we discuss the nature of the absorption peak of the protonated and deprotonated forms of the wild-type GFP.  相似文献   

8.
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.  相似文献   

9.
The photoactive yellow protein (PYP) is an important model protein for many (photoactive) signaling proteins. Key steps in the PYP photocycle are the isomerization and protonation of its chromophore, p-coumaric acid (pCA). In the ground state of the protein, this chromophore is in the trans configuration with its phenolic oxygen deprotonated. For this paper, we studied four different configurations of pCA solvated in water with ab initio molecular dynamics simulations as implemented in CP2K/Quickstep. We researched the influence of the protonation and isomerization state of pCA on its hydrogen-bonding properties and on the Mulliken charges of the atoms in the simulation. The chromophore isomerization state influenced the hydrogen-bonding less than its protonation state. In general, more charge yielded a higher hydrogen-bond coordination number. Where deprotonation increases both the coordination number and the residence time of the water molecules around the chromophore, protonation showed a somewhat lower coordination number on two of the three pCA oxygens but much higher residence times on all of them. This could be explained by the increased polarization of the OH groups of the molecule. The presence of the chromophore also influenced the charge and polarization of the water molecules around it. This effect was different in the four systems studied and mainly localized in the first solvation shell. We also performed a proton-transfer reaction from hydronium through various other water molecules to the chromophore. In this small charge-separated system, the protonation occurred within 6.5 ps. We identified the transition state for the final step in this protonation series.  相似文献   

10.
Electronic structure calculations of microhydrated model chromophores (in their deprotonated anionic forms) of the photoactive yellow and green fluorescent proteins (PYP and GFP) are reported. Electron-detachment and excitation energies as well as binding energies of mono- and dihydrated isomers are computed and analyzed. Microhydration has different effects on the excited and ionized states. In lower-energy planar isomers, the interaction with one water molecule blueshifts the excitation energies by 0.1-0.2 eV, whereas the detachment energies increase by 0.4-0.8 eV. The important consequence is that microhydration by just one water molecule converts the resonance (autoionizing) excited states of the bare chromophores into bound states. In the lower-energy microhydrated clusters, interactions with water have negligible effect on the chromophore geometry; however, we also identified higher-energy dihydrated clusters of PYP in which two water molecules form hydrogen-bonding network connecting the carboxylate and phenolate moieties and the chromophore is strongly distorted resulting in a significant shift of excitation energies (up to 0.6 eV).  相似文献   

11.
The chromophore of the photoactive yellow protein (PYP), the photoreceptor in the photomotility of the bacterium Halorhodospira halophila, is a deprotonated para‐coumaric thioester linked to the side residue of a cysteine residue. The photophysics of the PYP chromophore is conveniently modeled with para‐hydroxycinnamic thiophenyl esters. Herein, we report the first direct evidence, obtained with X‐ray diffraction, of photodimerization of a para‐hydroxycinnamic thiophenyl ester in single crystalline state. This result represents the first direct observation of [2+2] dimerization of a model PYP chromophore, and demonstrates that even very weak light in the visible region is capable of inducing parallel radical reactions in PYP from the excited state of the chromophore, in addition to the main reaction pathway (trans–cis isomerization). This PYP model system adds an interesting example to the known solid‐state photodimerizations, because unlike the anhydrous crystal (which is not capable of sustaining the stress and disintegrates in the course of photodimerization), a single water molecule “dilutes” the structure to the extent sufficient for single‐crystal‐to‐single‐crystal reaction.  相似文献   

12.
Using advanced QM/MM methods, the surprisingly negligible shift of the lowest-lying bright electronic excitation of the deprotonated p-coumaric acid (pCA(-)) within the photoactive yellow protein (PYP) is shown to stem from a subtle balance between hypsochromic and bathochromic effects. More specifically, it is found that the change in the excitation energy as a consequence of the disruption of the planarity of pCA(-) inside PYP is nearly canceled out by the shift induced by the intermolecular interactions of the chromophore and the protein as a whole. These results provide important insights about the primary absorption and the tuning of the chromophore by the protein environment in PYP.  相似文献   

13.
We report on a detailed theoretical analysis, based on extensive ab initio calculations at the CC2 level, of the S(1) potential energy surface (PES) of the photoactive yellow protein (PYP) chromophore. The chromophore's photoisomerization pathway is shown to be fairly complex, involving an intimate coupling between single-bond and double-bond torsions. Furthermore, these torsional modes are shown to couple to a third coordinate of hydrogen out-of-plane (HOOP) type whose role in the isomerization is here identified for the first time. In addition, it is demonstrated that hydrogen bonding at the phenolate moiety of the chromophore can hinder the single-bond torsion and thus facilitates double-bond isomerization. These results suggest that the interplay between intramolecular factors and H-bonding determines the isomerization in native PYP.  相似文献   

14.
We investigate by X‐ray crystallographic techniques the cryotrapped states that accumulate on controlled illumination of the blue light photoreceptor, photoactive yellow protein (PYP), at 110 K in both the wild‐type species and its E46Q mutant. These states are related to those that occur during the chromophore isomerization process in the PYP photocycle at room temperature. The structures present in such states were determined at high resolution, 0.95–1.05Å. In both wild type and mutant PYP, the cryotrapped state is not composed of a single, quasitransition state structure but rather of a heterogeneous mixture of three species in addition to the ground state structure. We identify and refine these three photoactivated species under the assumption that the structural changes are limited to simple isomerization events of the chromophore that otherwise retains chemical bonding similar to that in the ground state. The refined chromophore models are essentially identical in the wild type and the E46Q mutant, which implies that the early stages of their photocycle mechanisms are the same.  相似文献   

15.
Selectively bridged model compounds related to the chromophore in photoactive yellow protein have been synthesized where the single bond adjacent to the benzene ring (bond 1) and where both bond 1 and the adjacent double bond (bond 2) are bridged. They were compared to the nonbridged reference compound regarding their photophysical properties using steady-state and time-resolved fluorescence at various temperatures. Quantum chemical calculations were additionally performed and showed that several conformers are populated in the ground state. The neutral model compounds show that the nonradiative deactivation channel is linked to both single- and double-bond twisting. The relative importance of single-bond twisting is increased for the corresponding deprotonated hydroxy compounds with an enhanced donor character. The simultaneous photochemical activity of both single and double bonds explains the ease of photochemical isomerization in the confined environment of the natural PYP protein and also of the primary step in the vision process in rhodopsin.  相似文献   

16.
To understand how photoactive proteins function, it is necessary to understand the photoresponse of the chromophore. Photoactive yellow protein (PYP) is a prototypical signaling protein. Blue light triggers trans–cis isomerization of the chromophore covalently bound within PYP as the first step in a photocycle that results in the host bacterium moving away from potentially harmful light. At higher energies, photoabsorption has the potential to create radicals and free electrons; however, this process is largely unexplored. Here, we use photoelectron spectroscopy and quantum chemistry calculations to show that the molecular structure and conformation of the isolated PYP chromophore can be exploited to control the competition between trans–cis isomerization and radical formation. We also find evidence to suggest that one of the roles of the protein is to impede radical formation in PYP by preventing torsional motion in the electronic ground state of the chromophore.  相似文献   

17.
The photoactive yellow protein (PYP) acts as a light sensor to its bacterial host: it responds to light by changing shape. After excitation by blue light, PYP undergoes several transformations, to partially unfold into its signaling state. One of the crucial steps in this photocycle is the protonation of p-coumaric acid after excitation and isomerization of this chromophore. Experimentalists still debate on the nature of the proton donor and on whether it donates the hydrogen directly or indirectly. To obtain better knowledge of the mechanism, we studied this proton transfer using Car-Parrinello molecular dynamics, classical molecular dynamics, and computer simulations combining these two methods (quantum mechanics/molecular mechanics, QMMM). The simulations reproduce the chromophore structure and hydrogen-bond network of the protein measured by X-ray crystallography and NMR. When the chromophore is protonated, it leaves the assumed proton donor, glutamic acid 46, with a negative charge in a hydrophobic environment. We show that the stabilization of this charge is a very important factor in the mechanism of protonation. Protonation frequently occurs in simplified ab initio simulations of the chromophore binding pocket in vacuum, where amino acids can easily hydrogen bond to Glu46. When the complete protein environment is incorporated in a QMMM simulation on the complete protein, no proton transfer is observed within 14 ps. The hydrogen-bond rearrangements in this time span are not sufficient to stabilize the new protonation state. Force field molecular dynamics simulations on a much longer time scale have shown which internal rearrangements of the protein are needed. Combining these simulations with more QMMM calculations enabled us to check the stability of protonation states and clarify the initial requirements for the proton transfer in PYP.  相似文献   

18.
The photophysical behavior of the quinolone antibiotics, oxolinic (OX), cinoxacin (CNX) and pipemidic (PM) acids was studied as a function of pH and solvent properties. The ground state of these compounds exhibits different protonated forms, which also exist in the first excited states. Theoretical calculations of the Fukui indexes allowed to assigning the different protonation equilibria. The pK values indicate that the acidity of the 3-carboxylic and 4-carbonyl groups increases with the N-atom at position 2 in CNX. It has been found that fluorescence properties are strongly affected by pH, the more fluorescent species is that with protonated carboxylic acid, protonated species at the carbonyl group and the totally deprotonated form present very low fluorescence. The fluorescence behavior also depends on the chemical structure of the quinolone and on the solvent properties. The analysis of the solvent effect on the maximum and the width of the fluorescence band of OX, using the linear solvent-energy relation solvatochromic equation, indicates that the polarizability and hydrogen bond donor ability are the parameters that condition the spectral changes. The hydrogen bond acceptor ability of the solvents also contributes to the spectral shifts of CNX. The compound bearing the piperazinyl group at the position 7, PM only is fluorescent in high protic solvents. These results are discussed in terms of the competition between the intra- and intermolecular hydrogen bonds. The irradiation of OX, CNX and PM using 300 nm UV light led to a very low photodecomposition rate. Under the same conditions the nalidixic acid (NA), a structurally related quinolone, photodecomposes two orders of magnitude faster.  相似文献   

19.
We present a general two-color two-pulse femtosecond pump-dump approach to study the specific population transfer along the reaction coordinate through the higher vibrational energy levels of excited states of a complex solvated molecule via the depleted spontaneous emission. The time-dependent fluorescence depletion provides the correlated dynamical information between the monitored fluorescence state and the SEP "dumped" dark states, and therefore allow us to obtain the dynamics of the formation of the dark states corresponding to the ultrafast photoisomerization processes. The excited-state dynamics of LDS 751 have been investigated as a function of solvent viscosity and solvent polarity, where a cooperative two-step isomerization process is clearly identified within LDS 751 upon excitation.  相似文献   

20.
Fluorescein (FL) and its derivative 2',7'-dichlorofluoroescein (DCF) are well-known fluorescent dyes used in many biological and biochemical applications. Although extensive studies have been carried out to investigate their chemical and photophysical properties in different solvent media, little is known about their intrinsic behaviors in the gas phase. Here, infrared multiple photon dissociation (IRMPD) action spectra are reported for the three charged prototropic forms of FL and DCF and compared with computed IR spectra from electronic structure calculations. In each case, the measured spectra show good agreement with the calculated spectra of the lowest energy computed conformer. Moreover, the major bands of the monoanion IRMPD spectra show striking similarities to those of the dianions and are quite different from those of the cations. These experimental results clearly indicate that the gaseous monoanions are predominantly deprotonated on the xanthene chromophore, rather than the benzoate deprotonation site favored in solution. Investigations such as this, which provide a better understanding of intrinsic properties of ionic dyes, forms a baseline from which to elucidate solvent effects and will aid the rational design of dyes possessing desirable fluorescence properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号