首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The “active set” strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.  相似文献   

2.
NE/SQP (Refs. 2–3) is a recent algorithm that has proven quite effective for solving the nonlinear complementarity problem (NCP). NE/SQP is robust in the sense that its direction-finding subproblems are always solvable; in addition, the convergence rate of this method is q-quadratic. In this note, we consider a generalized version of NE/SQP, as first described in Ref. 4, which is suitable for the bounded NCP. We extend the work in Ref. 4 by demonstrating a stronger convergence result and present numerical results on test problems.  相似文献   

3.
In this paper, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising.  相似文献   

4.
Efficient sequential quadratic programming (SQP) implementations are presented for equality-constrained, discrete-time, optimal control problems. The algorithm developed calculates the search direction for the equality-based variant of SQP and is applicable to problems with either fixed or free final time. Problem solutions are obtained by solving iteratively a series of constrained quadratic programs. The number of mathematical operations required for each iteration is proportional to the number of discrete times N. This is contrasted by conventional methods in which this number is proportional to N 3. The algorithm results in quadratic convergence of the iterates under the same conditions as those for SQP and simplifies to an existing dynamic programming approach when there are no constraints and the final time is fixed. A simple test problem and two application problems are presented. The application examples include a satellite dynamics problem and a set of brachistochrone problems involving viscous friction.  相似文献   

5.
6.
苏珂 《应用数学》2007,20(1):128-133
序列二次规划方法(SQP)是解决非线性规划问题最有效的算法之一,但是当QP子问题不可行时算法可能会失败.而且线搜索中的罚参数的选择通常比较困难.在文献[1]中,SQP方法得到了修正,使得QP子问题可行.在本文中,我们利用滤子技术避免了罚函数的使用同时提出了带线搜索的滤子方法,最终保证了SQP方法总是可行的,而且得到了方法的全局收敛性.  相似文献   

7.
In this paper, we present an extension to the NE/SQP method; the latter is a robust algorithm that we proposed for solving the nonlinear complementarity problem in an earlier article. In this extended version of NE/SQP, instead of exactly solving the quadratic program subproblems, approximate solutions are generated via an inexact rule.Under a proper choice for this rule, this inexact method is shown to inherit the same convergence properties of the original NE/SQP method. In addition to developing the convergence theory for the inexact method, we also present numerical results of the algorithm tested on two problems of varying size.  相似文献   

8.
Penalty functions,Newton's method,and quadratic programming   总被引:1,自引:0,他引:1  
In this paper, the search directions computed by two versions of the sequential quadratic programming (SQP) algorithm are compared with that computed by attempting to minimize a quadratic penalty function by Newton's method, and it is shown that the differences are attributable to ignoring certain terms in the equation for the Newton correction. Since the effect of ignoring these terms may be to make the resultant direction a poor descent direction for the quadratic penalty function, it is argued that the latter is an inappropriate merit function for use with SQP. A method is then suggested by which these terms may be included without losing the benefits gained from the use of the orthogonal transformations derived from the constraints Jacobian.The authors wish to thank A. R. Conn and N. I. M. Gould for spirited discussions which took place when the second author spent some time at Waterloo, Ontario, Canada; they also thank L. C. W. Dixon for the clarifications that he suggested to the penultimate draft of this paper.  相似文献   

9.
A trust-region sequential quadratic programming (SQP) method is developed and analyzed for the solution of smooth equality constrained optimization problems. The trust-region SQP algorithm is based on filter line search technique and a composite-step approach, which decomposes the overall step as sum of a vertical step and a horizontal step. The algorithm includes critical modifications of horizontal step computation. One orthogonal projective matrix of the Jacobian of constraint functions is employed in trust-region subproblems. The orthogonal projection gives the null space of the transposition of the Jacobian of the constraint function. Theoretical analysis shows that the new algorithm retains the global convergence to the first-order critical points under rather general conditions. The preliminary numerical results are reported.  相似文献   

10.
We consider the problem of minimizing a nondifferentiable function that is the pointwise maximum over a compact family of continuously differentiable functions. We suppose that a certain convex approximation to the objective function can be evaluated. An iterative method is given which uses as successive search directions approximate solutions of semi-infinite quadratic programming problems calculated via a new generalized proximity algorithm. Inexact line searches ensure global convergence of the method to stationary points.This work was supported by Project No. CPBP-02.15/2.1.1.  相似文献   

11.
Combining the ideas of generalized projection and the strongly subfeasible sequential quadratic programming (SQP) method, we present a new strongly subfeasible SQP algorithm for nonlinearly inequality-constrained optimization problems. The algorithm, in which a new unified step-length search of Armijo type is introduced, starting from an arbitrary initial point, produces a feasible point after a finite number of iterations and from then on becomes a feasible descent SQP algorithm. At each iteration, only one quadratic program needs to be solved, and two correctional directions are obtained simply by explicit formulas that contain the same inverse matrix. Furthermore, the global and superlinear convergence results are proved under mild assumptions without strict complementarity conditions. Finally, some preliminary numerical results show that the proposed algorithm is stable and promising.  相似文献   

12.
For current sequential quadratic programming (SQP) type algorithms, there exist two problems: (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using ε-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented. This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above. Project partly supported by the National Natural Science Foundation of China and Tianyuan Foundation of China.  相似文献   

13.
本文用序列二次规划方法(SQP)结合Wolfe-Powell不精确线性搜索准则求解非线性规划问题.Wolfe-Powell准则是一种能够使目标函数获得充分下降而运行时间较省的确定步长方法.不精确线性搜索滤子方法比较其它结合精确线性搜索和信赖域方法求解问题的滤子方法更灵活更易实现.如果目标函数的预测下降量为负,我们的工作将主要利用可行恢复项改善可行性.一般条件下,本文提出的算法较易实现,且具有全局收敛性.数值试验显示了算法的有效性.  相似文献   

14.
The augmented Lagrangian SQP subroutine OPALQP was originally designed for small-to-medium sized constrained optimization problems in which the main calculation on each iteration, the solution of a quadratic program, involves dense, rather than sparse, matrices. In this paper, we consider some reformulations of OPALQP which are better able to take advantage of sparsity in the objective function and constraints.The modified versions of OPALQP differ from the original in using sparse data structures for the Jacobian matrix of constraints and in replacing the dense quasi-Newton estimate of the inverse Hessian of the Lagrangian by a sparse approximation to the Hessian. We consider a very simple sparse update for estimating 2 L and also investigate the benefits of using exact second derivatives, noting in the latter case that safeguards are needed to ensure that a suitable search direction is obtained when 2 L is not positive definite on the null space of the active constraints.The authors are grateful to John Reid and Nick Gould of the Rutherford Appleton Laboratory for a number of helpful and interesting discussions. Thanks are also due to Laurence Dixon for comments which led to the clarification of some parts of the paper.This work has been partly supported by a CAPES Research Studentship funded by the Brazilian Government.  相似文献   

15.
利用广义投影校正技术对搜索方向进行某种修正,改进假设条件,采用一种新型的一阶修正方向并结合SQP技术,建立了求解非线性约束最优化问题(p)的一个新的SQP可行下降算法,在较温和的假设条件下证明了算法的全局收敛性.由于新算法仅需较小的存储,从而适合大规模最优化问题的计算.  相似文献   

16.
存零约束优化(MPSC)问题是近年来提出的一类新的优化问题,因存零约束的存在,使得常用的约束规范不满足,以至于现有算法的收敛性结果大多不能直接应用于该问题.应用序列二次规划(SQP)方法求解该问题,并证明在存零约束的线性独立约束规范下,子问题解序列的聚点为原问题的Karush-Kuhn-Tucker点.同时为了完善各稳定点之间的关系,证明了强平稳点与KKT点的等价性.最后数值结果表明,序列二次规划方法处理这类问题是可行的.  相似文献   

17.
Shape constrained smoothing using smoothing splines   总被引:1,自引:0,他引:1  
Summary  In some regression settings one would like to combine the flexibility of nonparametric smoothing with some prior knowledge about the regression curve. Such prior knowledge may come from a physical or economic theory, leading to shape constraints such as the underlying regression curve being positive, monotone, convex or concave. We propose a new method for calculating smoothing splines that fulfill these kinds of constraints. Our approach leads to a quadratic programming problem and the infinite number of constraints are replaced by a finite number of constraints that are chosen adaptively. We show that the resulting problem can be solved using the algorithm of Goldfarb and Idnani (1982, 1983) and illustrate our method on several real data sets.  相似文献   

18.
The nonlinear complementarity problem can be reformulated as a nonlinear programming. For solving nonlinear programming, sequential quadratic programming (SQP) type method is very effective. Moreover, filter method, for its good numerical results, are extensively studied to handle nonlinear programming problems recently. In this paper, a modified quadratic subproblem is proposed. Based on it, we employ filter technique to tackle nonlinear complementarity problem. This method has no demand on initial point. The restoration phase, which is always used in traditional filter method, is not needed. Global convergence results of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.  相似文献   

19.
基于乘子交替方向法(ADMM)和序列二次规划(SQP)方法思想, 致力于研究线 性约束两分块非凸优化的新型高效算法. 首先, 以SQP思想为主线, 在其二次规划(QP)子问题的求解中引入ADMM思想, 将QP分解为两个相互独立的小规模QP求解. 其次, 借助增广拉格朗日函数和Armijo线搜索产生原始变量新迭代点. 最后, 以显式解析式更新对偶变量. 因此, 构建了一个新型ADMM-SQP算法. 在较弱条件下, 分析了算法通常意义下的全局收敛性, 并对算法进行了初步的数值试验.  相似文献   

20.
王华 《运筹学学报》2011,15(2):85-94
非线性互补问题可以转化成非线性约束优化问题. 提出一种非单调线搜索的可行SQP方法. 利用QP子问题的K-T点得到一个可行下降方向,通过引入一个高阶校正步以克服Maratos效应. 同时,算法采用非单调线搜索技巧获得搜索步长. 证明全局收敛性时不需要严格互补条件, 最后给出数值试验.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号