首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Softwood and hardwood bleached kraft pulps (SBKP and HBKP, respectively) and highly crystalline native celluloses such as algal, tunicate, bacterial and cotton lint celluloses were dissolved in 8 % (w/v) LiCl/N,N-dimethylacetamide (DMAc) after ethylenediamine (EDA) pretreatment. Complete dissolution of SBKP and other highly crystalline native celluloses in 8 % LiCl/DMAc was achieved after solvent exchange from EDA to DMAc through methanol. Neutral sugar composition analysis showed no significant differences between the original and EDA-treated pulps. A combination of size-exclusion chromatography and multi-angle laser light scattering (SEC–MALLS) was used to analyze the cellulose solutions after dilution to 1 % (w/v) LiCl/DMAc. The 0.05 % (w/v) solutions of highly crystalline cellulose in 1 % (w/v) LiCl/DMAc contained entangled molecules, and therefore 0.025 % (w/v) cellulose solutions in 1 % (w/v) LiCl/DMAc were used in the SEC–MALLS analysis to obtain reliable conformation plots (or double-logarithmic plots of molecular mass vs. root-mean-square radius). All the cellulose samples except SBKP gave conformation plots with slope values of 0.56–0.57, showing that these cellulose molecules had random-coil conformations. In contrast, SBKP gave a slope value of 0.35, indicating that some branched structures were present in the high-molecular-mass fraction. Double-logarithmic plots of the reduced viscosities of the cellulose solutions in 1 % (w/v) LiCl/DMAc versus the molecular mass were linear, except for SBKP, also suggesting the presence of anomalous cellulose structures in SBKP.  相似文献   

2.
The study focuses on the comparison of the results obtained by size exclusion chromatography (SEC) detection systems using multiangle laser light scattering (MALLS) and/or ultraviolet–visible (UV/VIS) detectors in analyses of cellulose in paper-based heritage objects. The commonly applied parameter for the evaluation of paper degradation stage and kinetics is weight (M w ) average molar mass measured by SEC. The main problems addressed here are whether the parameters obtained by various techniques and calibration strategies and in various laboratories can be treated universally and what the sources of the discrepancies can be. The SEC-UV/VIS technique proved to give reproducible results as demonstrated by the interlaboratory correlations. Using various data processing methods and SEC techniques it was also shown that molar masses should only be treated relatively. The differences between the kinetic curves based on the M w values obtained from various techniques and processed with various calibration procedures question the reliability of kinetic equations derived using the SEC results to describe the paper degradation.  相似文献   

3.
The molecular weight distributions of artificially aged transformer papers were studied using SEC–MALLS with 0.5 % DMAc/LiCl as solvent, providing chain length distributions and averages. The slow dissolution and presence of non-cellulosic contaminants tend in some cases to introduce errors in the DPw estimates, and a modified data processing procedure was developed to correct for extraneous scattering. Data were compared to the intrinsic viscosities obtained in 0.5 M Cuen and the ‘viscosimetric DP’ calculated thereof according to ISO 5351. DPvisc was 2–3 times lower than the weight average DP (DPw), but closer to or slightly above the number average DP (DPn) obtained by SEC–MALLS in the case of pure cellulose. Ageing of transformer papers were in some cases associated with changes in the polydispersity (DPw/DPn). The apparent degradation rate (defined as δ(1/DP)/δt) gradually decreased with time, resulting in a tendency for a ‘level-off’ DP in the range 200–300 for DPvisc and DPn, and roughly 1,000 for DPw.  相似文献   

4.
The paper deals with the application of size exclusion chromatography (SEC) for the studies of paper degradation phenomena. The goal is to solve some of the technical problems connected with the calibration of multi-detector SEC system and to find the correlation between SEC and viscometric results of degree of polymerization of cellulose. The results gathered for the paper samples degraded by acidic air pollutant (NO2) are used as an example of SEC–MALLS application. From the correlation between intrinsic viscosities and absolute value of molecular masses obtained with SEC/MALLS (Multi Angle Laser Light Scattering) technique, Mark-Houwink coefficients for cellulose in cupri-ethylenediamine solution were determined. Thus obtained coefficients were used for the determination of viscometric degree of polymerization (molecular mass) of the aged samples. An excellent correlation was found between the chromatographic values of molecular masses obtained with SEC–UV/VIS detection and the viscometric ones utilizing the improved values of Mark-Houwink coefficients.  相似文献   

5.
Large aggregates (Mr: 10(6)-10(7) g/mol) of human immunoglobulins are present in extremely small concentrations in IgG preparations (<0.1%). Traces of large protein aggregates cannot be determined by conventional size-exclusion chromatography (SEC) using UV detection due to limitations in sensitivity. The conventional analysis of IgG by SEC is limited to dimers and oligomers. Using light scattering it is possible to determine significant differences concerning the aggregate composition and the extent of protein aggregation in samples of different process steps. Two different pilot preparations were analyzed by SEC with UV and static light scattering detection and compared to dynamic light scattering in the batch mode. The change of large aggregates could be monitored and data were corroborated by dynamic light scattering.  相似文献   

6.
Ultrahigh-molar-mass (M) polymers such as DNA, cellulose, and polyolefins are routinely analyzed using size-exclusion chromatography (SEC) to obtain molar mass averages, distributions, and architectural information. It has long been contended that high-M polymers can degrade during SEC analysis; if true, the inaccurate molar mass information obtained can adversely affect decisions regarding processing and end-use properties of the macromolecules. However, most evidence to the effect of degradation has been circumstantial and open to alternative interpretation. For example, the shift in SEC elution volume as a function of increased chromatographic flow rate, observed using only a concentration-sensitive detector, may be the result of degradation or of elution via a nondegradatory slalom chromatography mechanism. Here, using both concentration-sensitive and multiangle static light-scattering detection, we provide unambiguous evidence that the polysaccharide alternan actually degrades during SEC analysis. The decrease in molar mass and size of alternan with increasing flow rate, measured using light scattering, allows ruling out an SC mode of elution and can only be interpreted as due to degradation. These findings demonstrate the extreme fragility of ultrahigh-M polymers and the care that must be taken for accurate characterization. Figure Scission of alternan chains in liquid chromatography.  相似文献   

7.
Norway spruce (Picea abies) cellulose samplesdissolved in lithium chloride/N,N-dimethyl-acetamide(LiCl/DMAc) covering a wide range of average molecular weights were analyzed bysize exclusion chromatography (SEC) and multi-angle laser light detection(MALLS). The molecular weight distribution of the samples was compared to themolecular weight distribution of cotton linters cellulose samples. To obtaincomplete dissolution of high-molecular-weight wood cellulose, previouslypublished procedures for dissolving cellulose in LiCl/DMAc were modified. SECseparation was performed using macroporous monodisperse polymer particles ascolumn matrix. The refractive index increment (dn/dc) forcellulose in 0.5% LiCl/DMAc was found to be 0.104. The radius of gyration,RG, of cellulose in 0.5% LiCl/DMAc depended on the molecular weight,M, according to the relation RG M0.55. Celluloseprepared from sprucewood by the sulfite cooking process had a broad molecularweight distribution compared to cotton linters cellulose.  相似文献   

8.
An aromatic semirigid polyquinoline, poly[2,2′-(p,p′-oxydi-p-phenylene) 6,6′-oxybis(4-phenylquinoline)], has been studied in dilute solution using viscometry, light scattering, and size-exclusion chromatography coupled with low-angle light-scattering detection (SEC/LALS). The SEC/LALS technique permits determination of the intrinsic viscosity and absolute molecular weight for a series of narrow fractions without preparative fractionation. Aggregation that was observed in dilute chloroform solutions was found to be related to protonation of the polyquinoline by HCI present in chloroform. Unperturbed dimensions calculated from the SEC/LALS results show the chain to have nearly freely rotating dimensions, as expected for a chain composed of long (12-Å) rigid segments connected by ether linkages.  相似文献   

9.
Commercially available hyaluronan (HA) samples were investigated by the method of size exclusion chromatography (SEC). The fractions eluted from the SEC column were on-line molecularly characterized by using a multi-angle laser light scattering (MALLS) photometer. Along with the SEC-MALLS technique, the high-molecular-weight HA biopolymers were (off-line) analyzed by capillary viscometry.  相似文献   

10.
The property profile of cellulose derivatives dissolved in aqueous solvents is not only dependent on the chemical composition (average-, molar- or regiospecific degree of substitution, as well as the substitution along the chain), solvent, temperature and concentration but also on the molar mass and the particle size. All this information can be obtained from the Mark-Houwink-Sakurada-relationship ([;gh]-M-) or the RG-M-relationship, if these are at hand. These relationships are suitable for a specific degree of substitution. The RG-M-relationship has only been determined and published for a few water-soluble cellulose derivatives. The prerequisite is the availability of a homologous series of samples with the same chemical composition. In this paper it is shown that only the ultrasonic degradation is able to create such a series. Due to the ability of coupled methods of analysis to acquiring absolute data, molar mass and particle size distributions have been compiled in recent years. Using such methods it was possible to determine molar mass and particle size distributions of several aqueous cellulose derivative solutions by combining a fractionation unit (size exclusion chromatography (SEC) or flow field-flow fractionation (FFFF)) with multi angle laser light scattering (MALLS) for the detection of Mw and RG and concentration detection (DRI). Results for nonionic cellulose ethers, mixed cellulose ethers, ionic carboxymethyl cellulose, sulfoethyl cellulose, hydrophobically modified hydroxyethyl cellulose were obtained and are partially discussed with focus on the recovery of cellulose derivates after fractionation and the impact on the distribution functions.  相似文献   

11.
The novel approach described allows to characterise the surfactant-polymer interaction under several sodium dodecyl sulphate (SDS) concentrations (0-20 mM) using size exclusion chromatography (SEC) with online multi-angle light scattering (MALS) and refractometric (RI) detection. Three different cellulose derivatives, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC), have been studied in solution containing 10 mM NaCl and various concentrations of sodium dodecyl sulphate. It is shown that this approach is well suited for successful application of both Hummel-Dreyer and multi-component light scattering principles and yields reliable molecular masses of both the polymer complex and the polymer itself within the complex, the amount of surfactant bound into the complex as well as appropriate values of the refractive index increment (dn/dc)micro, of both the complex and the polymer in question. The more hydrophobic derivatives HPC and HPMC adsorbed significantly more SDS than HEC. The inter-chain interactions close to critical aggregation concentration (cac) were clearly seen for HPC and HPMC as an almost two-fold average increase in polymer molecular mass contained in the complex.  相似文献   

12.
We present a method by which to obtain the absolute, chemical-heterogeneity-corrected molar mass (M) averages and distributions of copolymers and apply the method to a gradient random copolymer of styrene and methyl methacrylate in which the styrene percentage decreases from approximately 30% to 19% as a function of increasing molar mass. The method consists of separation by size-exclusion chromatography (SEC) with detection using multi-angle static light scattering (MALS), differential viscometry (VISC), differential refractometry (DRI), and ultraviolet absorption spectroscopy (UV) and relies on the preferential absorption of styrene over methyl methacrylate at 260 nm. Using this quadruple-detector SEC/MALS/UV/VISC/DRI approach, the percentage of styrene (%St) in each elution slice is determined. This %St is then used to determine the specific refractive index increment, corrected for chemical composition, at each elution slice, which is then used to obtain the molar mass at each slice, corrected for chemical composition. From this corrected molar mass and from the chemical-composition-corrected refractometer response, the absolute, chemical-heterogeneity-corrected molar mass averages and distribution of the copolymer are calculated. The corrected molar mass and intrinsic viscosity at each SEC elution slice are used to construct a chemical-heterogeneity-corrected Mark–Houwink plot. The slice-wise-corrected M data are used, in conjunction with the MALS-determined R G,z of each slice, to construct a conformation plot corrected for chemical heterogeneity. The corrected molar mass distribution (MMD) of the gradient copolymer extends over an approximately 30,000 g/mol wider range than the uncorrected MMD. Additionally, correction of the Mark–Houwink and conformation plots for the effects of chemical heterogeneity shows that the copolymer adopts a more compact conformation in solution than originally concluded.  相似文献   

13.
Abstract

A review is given of the use of low angle laser light scattering (LALLS) detection in conjunction with size exclusion chromatography (SEC) to measure polymer molecular weight distributions without conventional SEC column calibration methods. A summary of light scattering theory is presented, and instrument configurations and principles of operation are described for two LALLS photometers. Also discussed are the overall performance of the SEC/LALLS technique and data from selected applications.  相似文献   

14.
A size-exclusion chromatography (SEC) method in N,N-dimethylformamide containing 0.1 M LiNO3 is shown to be suitable for the determination of molar mass distributions of three classes of perfluorosulfonated ionomers, including Nafion®. Autoclaving sample preparation is optimized to prepare molecular solutions free of aggregates, and a solvent exchange method concentrates the autoclaved samples to enable the use of molar-mass-sensitive detection. Calibration curves obtained from light scattering and viscometry detection suggest minor variation in the specific refractive index increment across the molecular size distributions, which introduces inaccuracies in the calculation of local absolute molar masses and intrinsic viscosities. Conformation plots that combine apparent molar masses from light scattering detection with apparent intrinsic viscosities from viscometry detection partially compensate for the variations in refractive index increment. The conformation plots are consistent with compact polymer conformations, and they provide Mark–Houwink–Sakurada constants that can be used to calculate molar mass distributions without molar-mass-sensitive detection. Unperturbed dimensions and characteristic ratios calculated from viscosity–molar mass relationships indicate unusually free rotation of the perfluoroalkane backbones and may suggest limitations to applying two-parameter excluded volume theories for these ionomers.  相似文献   

15.
The coupling of a low-pressure size exclusion chromatography (SEC) with a modified Ubbelohde capillary viscometer is described. This SEC/viscometry system measures the flow time of aliquot fractions (5ml) of the SEC effluent along with the refractive index change. This dual detection leads to the determination of the intrinsic viscosity as a function of the elution volume, thus allowing a precise use of Benoit's universal calibration. Moreover information of the branching factors (degree of long-chain branching, long-chain branching frequency) can be calculated under certain assumptions. As an example the changes in molar-mass distribution and branching factors during mechanical shear degradation (mastication) of special polychloroprene samples were investigated. It is shown that the SEC/viscometry system is especially suitable for the characterization of polymers with broad molar-mass distribution and extremely high molecular tails. The data provided by this method are useful for the investigation of the viscoelastic behaviour of concentated polychloroprene solutions and for quality control of polymers in the rubber and adhesives industries.  相似文献   

16.
Hydrolytic degradation of cellulose was shown to take place during the activation procedure in distilled water during the dissolution procedure of cellulose samples from papers for size-exclusion chromatography analyses in the lithium chloride-N,N-dimethylacetamide (DMAc) solution system. The use of dilute aqueous sodium hydroxide solution in the activation procedure prevents hydrolytic degradation of cellulose during the dissolution procedure, especially in the case of samples of aged papers with low pH. The use of the freeze-drying technique provides samples of cellulose ready-made for dissolution in lithium chloride-N,N-dimethylacetamide solution.  相似文献   

17.
Nanostructures arising from the reduction of ionic selenium by a selenite-ascorbate redox system in aqueous solutions of oxyethyl cellulose, methyl cellulose, and carboxymethyl cellulose have been studied by using a set of optical methods (flow birefringence and static and dynamic light scattering) and viscometry. The adsorption of a substantial amount of macromolecules (up to 3200) on selenium nanoparticles has been experimentally discovered. This effect leads to the formation of superhigh-molecular-mass spherical nanostructures with a high density of the polymer shell. The thermodynamic state of solutions of nanostructures has been characterized. In the region of occurrence of stable dispersions, the values of the free energy of macromolecule-selenium nanoparticle interaction have been calculated for polymer nanostructures. Radii of amorphous selenium nanoparticles occurring in the nuclei of nanostructures and the thickness of the polymer shell have been estimated. Given the fixed molecular mass and comparable rigidity of a polymer matrix, the structure of the monomer unit of the cellulose derivative defines the morphology of the nanostructure being formed.  相似文献   

18.
The molecular weight of unfractionated heparin was determined by size exclusion chromatography (SEC) coupled with multiangle light scattering (MALS) detection. The SEC/MALS method determines absolute molecular weight directly from the angular dependence of scattered light intensity as a function of concentration and does not rely on molecular weight standards for column calibration. The SEC/MALS method developed at Scientific Protein Laboratories was qualified in terms of specificity, precision, robustness, and accuracy. By eliminating the requirement of well-characterized molecular weight standards derived from heparin, the present procedure represents a clear improvement over the column calibration methods used in molecular weight determination. The SEC/MALS method is suitable for routine quality control of unfractionated heparin.  相似文献   

19.
The solution state of cellulose in the system N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) depends on various factors such as cellulose concentration, provenience (cotton, hardwood, softwood) and chemical history (pulping, pretreatment, bleaching) of cellulose, LiCl concentration, activation method, dissolution conditions (time, shaking), and water content. In particular the influencing of the latter has been intensively investigated in our present studies. Working in anhydrous conditions is not practicable for routine size exclusion chromatography (SEC) analysis. Especially in solutions diluted to SEC levels (0.9 wt% LiCl), an aggregation induced by water was observed. Depending on the time of dissolution and on the amount of water, changes in the solution state were observed. In some cases the amount of aggregates increases within a few minutes. This is reflected by a time-dependent increase in the scattering intensity and quantitatively proved by an increase in the aggregation peak in the calculated intensity distributions. With less soluble pulps, traces of water (lower than 0.01 M) can already suffice to induce and promote aggregation. To disturb a “good” stock solution, the concentration of water must be higher than 0.05 M. The aggregates formed correspond to the model of the fringed micelle.  相似文献   

20.
Asymmetrical flow field-flow fractionation (AsFIFFF) was used to determine the hydrodynamic particle sizes, molar masses, and phase transition behaviour of various poly(N-isopropylacrylamide) (PNIPAM) samples synthesised by reversible addition--fragmentation chain transfer (RAFT) and conventional free radical polymerisation processes. The results were compared with corresponding data obtained by dynamic light scattering (DLS) and size exclusion chromatography (SEC). Agreement between the three methods was good except at higher molar masses, where the molar mass averages obtained by SEC were much lower than those obtained by AsFIFFF and light scattering. The aggregation of the polymers, which are thermally sensitive, was studied by DLS and AsFIFFF at various temperatures. In deionised water there was an abrupt change in the particle size due to phase separation at approximately equal to 32-35 degrees C. The critical temperatures determined by AsFIFFF were 3-5 degrees C higher than those obtained by DLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号