首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper has explored the quenching of fluorescence of the dye safranine T (ST) by the inorganic cations viz Cu2+, Co2+, Ni2+ and Mn2+ in micellar solutions of the surfactant dioxyethylene nonyl phenol (Igepal CO-210), pentaoxyethylene nonyl phenol (Igepal CO-520) and dodecaoxyethylene nonyl phenol (Igepal CO-720). The quenching results have been calculated in light of stern volmer equation (SV) to evaluate the extent of interaction between the fluorophore (ST) and quencher. The average concentration of the quencher ions in the micelle have been determined. The quenching efficiency of ST by inorganic ions in micellar medium is lower than that in aqueous medium. The results show that the ions get partitioned in the micellar medium. The values of the partition coefficient of the ions decrease with increase in HLB value and number of oxyethylene groups in Igepal.  相似文献   

2.
The hydration of the poly(oxyethylene) shell in polystyrene-block-poly(2-vinylpyridine)-block-poly(oxyethylene) micelles was investigated by monitoring the solvent relaxation response of a solvent-sensitive fluorophore (patman). It has been found that the relaxation occurs on the nanosecond time scale. Results for triblock copolymer micelles have been compared with those obtained for polystyrene-block-poly(2-vinylpyridine) micelles in order to evaluate the effect of the outer polyoxyethylene layer. Considerable pH-dependent changes in the hydration of poly(oxyethylene) units at the poly(2-vinylpyridine)/polyoxyethylene interface were observed. Additionally, the paper shows that the solvent relaxation technique is a suitable tool for studying polymeric nanoparticles and that the measurement of time-dependent half-width of the emission spectrum allows for estimation of the extent of relaxation process observed by a given experimental setup.  相似文献   

3.
Effects of solvent density on the solubility of polar probes which undergo specific interactions with poly(oxyethylene) are studied. The analysis of retention data on capillary columns coated with oligomeric poly(oxyethylene) stationary phases shows that, within the experimental error, the enthalpic contribution to the solubility is practically independent of variations in the solvent density. Average values of enthalpies of solute transfer are reported for different probes and temperatures. The observed systematic decrease of solubility with the increasing density is due to a change of entropy. Some thermodynamic consequences inferred from these general results are discussed. One relevant observation is that the influence of solvent's final groups must be negligible. This is even the case for oligomers with number-average degrees of polymerization as low as 13, hosting solutes capable of strong interactions with the end hydroxyl groups of linear poly(ethylene glycols). Possible explanations for this behavior are explored through molecular dynamics simulations of the liquid solvent.  相似文献   

4.
The photophysics of 4-(dimethylamino)pyridine (DMAP) has been investigated in different solvents in the presence of aliphatic and fluorinated aliphatic alcohols, respectively. For most systems, consecutive two-step hydrogen-bonded complex formation is observed in the presence of alcohols. Equilibrium constants are determined from UV spectroscopic results for the formation of singly and doubly complexed species. The resolved absorption and fluorescence spectra for the singly and doubly complexed DMAP are derived by means of the equilibrium constants. Exceptionally large hydrogen bond basicity values are found for the ground and singlet excited DMAP molecules. In n-hexane, as a consequence of complex formation, the intramolecular charge transfer (ICT) emission becomes dominant over of the locally excited fluorescence; the fluorescence and triplet yields increase considerably with complexation. In polar solvents, both the fluorescence and triplet yields of the complex are much smaller than that of the uncomplexed DMAP. The dipole moments derived for the singly complexed species from the Lippert-Mataga analysis are much larger than those of the uncomplexed molecules. However, for the relaxed ICT excited-state one obtains different dipole moments in apolar and polar solvents. This may be explained by a conformational change of the molecule in the ICT excited state from planar geometry in apolar solvent to the perpendicular structure (characterized with bigger dipole moment) in polar solvent.  相似文献   

5.
Bakir M  Abdur-Rashid K  Mulder WH 《Talanta》2000,51(4):735-741
Optical and thermodynamic measurements on fac-Re(CO)(3)(dpknph)Cl in polar non aqueous solvents revealed the existence of two interlocked conformational forms for fac-Re(CO)(3)(dpknph)Cl. The equilibrium distribution of the low (alpha-) and high (beta-) energy conformations is solvent dependent, controlled by the dipole moment of the solvent molecules and their orientation around the total dipole of fac-Re(CO)(3)(dpknph)Cl. The interplay between the alpha- and beta-conformations of fac-Re(CO)(3)(dpknph)Cl, allowed calculations of their extinction coefficients, by forcing the equilibrium to shift to one conformation, using chemical stimuli. In DMSO and DMF extinction coefficients of 87 000+/-2000 and 35 000+/-2000 M(-1) cm(-1) were calculated for the beta- and alpha-conformations of fac-Re(CO)(3)(dpknph)Cl at lambda(max.), respectively. Thermo-optical measurements on fac-Re(CO)(3)(dpknph)Cl, allowed calculations of the activation parameters for the interconversion between the alpha- and beta-conformations of fac-Re(CO)(3)(dpknph)Cl. In DMSO and DMF changes in enthalpy (DeltaH(?)) of -11.2+/-1.3 and 10.9+/-0.5 kJmol(-1), entropy (DeltaS(?)) of -12.7+/-4.3 and 29.4+/-1.7 JK(-1) mol(-1), and free energy (DeltaG(?)) of -7.5+/-0.2 and+2.2+/-0.2 kJmol(-1) and hence equilibrium constants of 20.9+/-1.7 and 0.4+/-0.1 were calculated for fac-Re(CO)(3)(dpknph) at 295 K. The high values for the extinction coefficients and low values for the activation parameters for the interconversion between the alpha- and beta-conformations of fac-Re(CO)(3)(dpknph)Cl, in polar non aqueous solvents allowed the use of these systems as molecular sensors to probe their structural relaxation and interactions with their surroundings. These systems (fac-Re(CO)(3)(dpknph)Cl and surrounding solvent molecules) optically sense chemical and physical stimuli and their sensing power depends on the intensity and nature of these stimuli, i.e. the systems exhibit a high degree of sensitivity and selectivity.  相似文献   

6.
A new class of polar polysilabutanes with mono- or tri-(oxyethylene)phenyl groups on the silicon atom have been synthesized by anionic polymerization of silacyclobutanes having ω-(t-butyldimethylsilyl-protected) mono- or tri-(oxyethylene)phenyl groups and subsequent deprotection of the silyl groups. The monomers were synthesized by treatment of 1,1-dichlorosilacyclobutane with ω-(t-butyldimethylsilyl-protected) mono- or tri-(oxyethylene)phenyl Grignard reagents. Anionic polymerization of silacyclobutane was performed with butyllithium initiator in THF. t-Butyldimethylsilyl-protecting groups at polymer pendant groups were hydrolyzed with tetrabutyl ammonium fluoride in water-containing THF. The obtained polysilabutanes were soluble in a polar organic solvent such as methanol, and their mass distributions were analysed by matrix-assisted laser-desorption-ionization mass spectrometry (MALDI TOF MS). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 225–231, 1998  相似文献   

7.
We investigated the complexation of valinomycin (VM) in different solvent environments with the aid of the UVRR spectroscopy. By probing the 206.5 and 229 nm excited Raman spectra, we showed that new bands are observed around 1700 and 1290 cm(-1). We assigned the 1700 cm(-1) band to the hydrogen bonded ester carbonyl stretching vibration. In a polar solvent, VM-K(+) complexation shows significant intensity changes in amide and ester carbonyl stretching region. Because of the small amount of conformational interconversion, complexation has a negligible effect on other band intensities including, the amide III, C(alpha)H, and amide II. We also showed the effects of the solvent polarity on the solution conformation of VM.  相似文献   

8.
The equilibrium structure of iron pentacarbonyl, Fe(CO)5, solvated in various alcohols has been investigated by Fourier transform infrared (FTIR) measurements and density functional theory calculations. This system was studied because it is prototypical of a larger class of monometallic systems, which are electronically saturated but not sterically crowded. Upon solvation, the Fe(CO)5 is not just surrounded by a solvation shell. Instead, solute-solvent complexes are formed with the oxygen of the alcohol oriented toward an axial ligand of the Fe(CO)5 giving a formation energy on the order of -5 kJ/mol. This complexation is not a chemical reaction but rather a "preassembly" of the solute molecules with a single solvent molecule. For instance, at room temperature the interaction between Fe(CO)5 and ethanol results in 87% of all Fe(CO)5 molecules being complexated with a single ethanol molecule. This complexation was found in all the alcohol systems studied in this paper. The stability of these complexes was found to depend on the alcohol chain length and branching. The observed complexation mechanism is accompanied by an electron density shift from the complexed alcohol molecule toward Fe(CO)5 where it induces a dipole moment. The finding that Fe(CO)5 forms a complex with the hydroxyl group of a single solvent molecule might have significant implications for ligand substitution reactions. This implies that ligand substitution reactions do not have to proceed via a dissociative mechanism. Instead, the reaction might proceed through a concerted mechanism with the leaving CO simultaneously being replaced by the incoming alcohol that was complexed to Fe(CO)5 prior to the photoexcitation.  相似文献   

9.
A kinetic study of copolymerization of styrene and α-methylstyrene accompanied with depropagation, initiated by n-butyilithium in cyclohexane with tetrahydrofuran as an additive polar solvent, has been performed. The various propagation rate constants of active species and the complexation equilibrium constants between different kinds of active species were determined. Furthermore, the reactivity ratios of two monomers with regard to monomeric, monoetherated and dietherated active species were obtained.  相似文献   

10.
Novel amphiphilic network polymers consisting of nonpolar, short primary polymer chains and polar, long crosslink units were prepared, and the swelling behavior of resulting amphiphilic gels is discussed by focusing on the influence of characteristic dangling chains; that is, benzyl methacrylate (BzMA) was copolymerized with tricosaethylene glycol dimethacrylate [CH2?C(CH3)CO(OCH2CH2)23OCOC(CH3)?CH2, PEGDMA‐23] in the presence of lauryl mercaptan as a chain‐transfer agent because BzMA forms nonpolar, short primary polymer chains and PEGDMA‐23 as a crosslinker contains a polar, long poly(oxyethylene) unit. The enhanced incorporation of dangling chains into the network polymer was brought by shortening the primary polymer chain length, and copolymerization with methoxytricosaethylene glycol methacrylate, a mono‐ene counterpart of PEGDMA‐23, enforced the incorporation of flexible dangling poly(oxyethylene) chains into the network polymer, although the former dangling chains as terminal parts of primary poly(BzMA) chains were rather rigid. Then, the influence of characteristic dangling chains on the swelling behavior of amphiphilic gels was examined in mixed solvents consisting of nonpolar t‐butylbenzene and polar methanol. The profiles of the solvent‐component dependencies of the swelling ratios were characteristic of amphiphilic gels. The introduction of dangling poly(oxyethylene) chains led not only to an increased swelling ratio but also to sharpened swelling behavior of amphiphilic gels. The swelling response of amphiphilic gels was checked by changing the external solvent polarity. The dangling chains with freely mobile end segments influenced the swelling response of gels. The amphiphilic gels with less entangled, collapsed crosslink units exhibited faster swelling response than the ones with more entangled, collapsed primary polymer chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2192–2201, 2004  相似文献   

11.
Mono- and alpha,omega-bis-styryl-oligo(oxyethylene glycol) ethers have been constructed in an efficient two-step synthesis. From these precursors, poly(oxyethylene glycol) polymer (POP) supports of varying monomer and cross-linker composition have been produced. The swelling properties and mass-solvent uptake of these novel materials have been evaluated in a variety of solvents, demonstrating that POP supports exhibit enhanced solvent compatibilities over the commercial resins TENTA-GEL, ARGO-GEL, and Merrifield's resin. The utility of POP supports in solid-phase organic chemistry has also been demonstrated successfully. It is anticipated that these high-loading polymeric supports will have generic application in the solid-phase synthesis of combinatorial libraries and the in situ screening of these libraries in the aqueous environment of a bioassay.  相似文献   

12.
Detailed insights into the excited-state enol(N*)-keto(T*) intramolecular proton transfer (ESIPT) reaction in 2-(2'-hydroxy-4'-diethylaminophenyl)benzothiazole (HABT) have been investigated via steady-state and femtosecond fluorescence upconversion approaches. In cyclohexane, in contrast to the ultrafast rate of ESIPT for the parent 2-(2'-hydroxyphenyl)benzothiazole (>2.9+/-0.3 x 10(13) s(-1)), HABT undergoes a relatively slow rate (approximately 5.4+/-0.5 x 10(11) s(-1)) of ESIPT. In polar aprotic solvents competitive rate of proton transfer and rate of solvent relaxation were resolved in the early dynamics. After reaching the solvation equilibrium in the normal excited state (N(eq)*), ESIPT takes place with an appreciable barrier. The results also show N(eq)*(enol)<-->T(eq)*(keto) equilibrium, which shifts toward N(eq)* as the solvent polarity increases. Temperature-dependent relaxation dynamics further resolved a solvent-induced barrier of 2.12 kcal mol(-1) for the forward reaction in CH(2)Cl(2). The observed spectroscopy and dynamics are rationalized by a significant difference in dipole moment between N(eq)* and T(eq)*, while the dipolar vector for the enol form in the ground state (N) is in between that of N(eq)* and T(eq)*. Upon N-->N* Franck-Condon excitation, ESIPT is energetically favorable, and its rate is competitive with the solvation relaxation process. Upon reaching equilibrium configurations N(eq)* and T(eq)*, forward and/or backward ESIPT takes place with an appreciable solvent polarity induced barrier due to differences in polarization equilibrium between N(eq)* and T(eq)*.  相似文献   

13.
Electronic absorption and steady state emission properties of a hemicyanine dye [4-[4-(dimethylamino)styryl]-1-docosylpyridinium bromide], have been studied in several pure solvents and two mixed binary solvents (water+ethanol and water+acetonitrile). In pure solvents the band-width of the absorption spectrum correlates well with the Stoke's shift. In mixed aqueous solvents two different molecular forms of the solute, viz. the monomer and the dimer of the solute exists in equilibrium. Thermodynamic parameters (e.g. the Delta G degrees and Delta H degrees ) characterizing the equilibrium have been determined. While the value of Delta G degrees changes very slightly with the composition of the binary mixture, the value of Delta H degrees has been observed to depend significantly with solvent composition.  相似文献   

14.
Solubilization of water in mixed reverse micellar systems with anionic surfactant (AOT) and nonionic surfactants (Brijs, Spans, Tweens, Igepal CO 520), cationic surfactant (DDAB)-nonionic surfactants (Brijs, Spans, Igepal CO 520), and nonionic (Igepal CO 520)-nonionics (Brijs, Spans) in oils of different chemical structures and physical properties (isopropyl myristate, isobutyl benzene, cyclohexane) has been studied at 303 K. The enhancement in water solubilization has been evidenced in these systems with some exceptions. The maximum water solubilization capacity (omega(0,max)) in mixed reverse micellar systems occurred at a certain mole fraction of a nonionic surfactant, which is indicated as X(nonionic,max). The addition of electrolyte (NaCl or NaBr) in these systems tends to enhance their solubilization capacities further both at a fixed composition of nonionic (X(nonionic); 0.1) and at X(nonionic,max) at 303 K. The maximum in solubilization capacity of electrolyte (omega(max)) was obtained at an optimal electrolyte concentration (designated as [NaCl](max) or [NaBr](max)). All these parameters, omega(0,max) vis-a-vis X(nonionic,max) and omega(max) vis-a-vis [NaCl](max), have been found to be dependent on the surfactant component (content, EO chains, and configuration of the polar head group, and the hydrocarbon moiety of the nonionic surfactants) and type of oils. The conductance behavior of these systems has also been investigated, focusing on the influences of water content (omega), content of nonionics (X(nonionic)), concentration of electrolyte ([NaCl] or [NaBr]), and oil. Percolation of conductance has been observed in some of these systems and explained by considering the influences of the variables on the rigidity of the oil/water interface and attractive interactions of the surfactant aggregates. Percolation zones have been depicted in the solubilization capacity vs X(nonionic) or [electrolyte] curves in order to correlate with maximum in water or electrolyte solubilization capacity. The overall results, obtained in these studies, have been interpreted in terms of the model proposed by Shah and co-workers for the solubility of water in water-in-oil microemulsions, as their model proposed that the two main effects that determine the solubility of these systems are curvature of the surfactant film separating the oil and water and interactions between water droplets.  相似文献   

15.
Carbonate adsorption on goethite in competition with phosphate   总被引:1,自引:0,他引:1  
Competitive interaction of carbonate and phosphate on goethite has been studied quantitatively. Both anions are omnipresent in soils, sediments, and other natural systems. The PO4-CO3 interaction has been studied in binary goethite systems containing 0-0.5 M (bi)carbonate, showing the change in the phosphate concentration as a function of pH, goethite concentration, and carbonate loading. In addition, single ion systems have been used to study carbonate adsorption as a function of pH and initial (H)CO3 concentration. The experimental data have been described with the charge distribution (CD) model. The charge distributions of the inner-sphere surface complexes of phosphate and carbonate have been calculated separately using the equilibrium geometries of the surface complexes, which have been optimized with molecular orbital calculations applying density functional theory (MO/DFT). In the CD modeling, we rely for phosphate on recent parameters from the literature. For carbonate, the surface speciation and affinity constants have been found by modeling the competitive effect of CO3 on the phosphate concentration in CO3-PO4 systems. The CO3 constants obtained can also predict the carbonate adsorption in the absence of phosphate very well. A combination of inner- and outer-sphere CO3 complexation is found. The carbonate adsorption is dominated by a bidentate inner-sphere complex, (FeO)2CO. This binuclear bidentate complex can be present in two different geometries that may have a different IR behavior. At a high PO(4) and CO3 loading and a high Na+ concentration, the inner-sphere carbonate complex interacts with a Na+ ion, probably in an outer-sphere fashion. The Na+ binding constant obtained is representative of Na-carbonate complexation in solution. Outer-sphere complex formation is found to be unimportant. The binding constant is comparable with the outer-sphere complexation constants of, e.g., SO(2-)4 and SeO(2-)4.  相似文献   

16.
低聚醚磺酸锂/梳形聚醚复合物的单离子导电性   总被引:1,自引:0,他引:1  
低聚醚磺酸锂/梳形聚醚复合物的单离子导电性郑云贵,万国祥(中国科学院成都有机化学研究所成都610041)关键词低聚醚磺酸锂,单离子导体,阳离子迁移数聚合物阳离子导体一般采用单体盐与能促进离子迁移的单体通过共聚或将其均聚物共混的方式制备’‘-‘’.由于...  相似文献   

17.
PressureeffectontheequiIibriumconstantOneoftheuniquefeaturesofsupercriticalfluids(SCFs)isthattheirphysicochemicalpropeI-tiesareverysensitivetopressure,especiallyinthenear-criticalregion.'Ontheotherhand,theketo-enoltautomericequiIibriumconstant(K.)forEAAisastrongfunctionofthepropertiesofthemediuminwhichthetautomerismtakesplace.Thus,thechangeinpressurewilIaffecttheketo-enoltautomerismofEAAinSCFs.lnthispaper,theKcfortheketo-enoItautomerizationinSCCO2andinSCCO2-ethanolmixtUreweredetermi…  相似文献   

18.
[Sn(9)Pt(2)(PPh(3))](2)(-) (2) was prepared from Pt(PPh(3))(4), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive and has been characterized by ESI-MS, variable-temperature (119)Sn, (31)P, and (195)Pt NMR and single-crystal X-ray diffraction studies. The structure of 2 comprises an elongated tricapped Sn(9) trigonal prism with a capping PtPPh(3), an interstitial Pt atom, a hypercloso electron count (10 vertex, 20 electron) and C(3)(v)() point symmetry. Hydrogenation trapping experiments and deuterium labeling studies showed that the formation of 2 involves a double C-H activation of solvent molecules (en or DMSO) with the elimination of H(2) gas. The ESI-MS analysis of 2 showed the K[Sn(9)Pt(2)(PPh(3))](1)(-) parent ion, an oxidized [Sn(9)Pt(2)(PPh(3))](1)(-) ion, and the protonated binary cluster anion [HSn(9)Pt(2)](1)(-). 2 is highly fluxional in solution giving rise to a single time-averaged (119)Sn NMR signal for all nine Sn atoms but the Pt atoms remain distinct. The exchange is intramolecular and is consistent with a rigid, linear Pt-Pt-PPh(3) rod embedded in a liquidlike Sn(9) matrix. [Sn(9)Ni(2)(CO)](3)(-) (3) was prepared from Ni(CO)(2)(PPh(3))(2), K(4)Sn(9), and 2,2,2-cryptand in en/toluene solvent mixtures. The [K(2,2,2-cryptand)](+) salt is very air and moisture sensitive, is paramagnetic, and has been characterized by ESI-MS, EPR, and single-crystal X-ray diffraction. Complex 3 is a 10-vertex 21-electron polyhedron, a slightly distorted closo-Sn(9)Ni cluster with an additional interstitial Ni atom and overall C(4)(v)() point symmetry. The EPR spectrum showed a five-line pattern due to 4.8-G hyperfine interactions involving all nine tin atoms. The ESI-MS analysis showed weak signals for the potassium complex [K(2)Sn(9)Ni(2)(CO)](1-) and the ligand-free binary ions [K(2)Sn(9)Ni(2)](1)(-), [KSn(9)Ni(2)](1)(-), and [HSn(9)Ni(2)](1)(-).  相似文献   

19.
The effect of aprotic inert media on the conformational structure of 2-(2,2-dicyanovinyl-1-methylthio)-5-methylpyrrole was studied by UV, NMR, and IR spectroscopy. Chloroform and less polar solvents stabilize only one of the four conformers. In more polar media, there is a dynamic equilibrium between all the possible conformers of the title compound. The state of the equilibrium depends both on the solvent and on the temperature.  相似文献   

20.
With the use of pulsed magnetic-field gradient NMR, self-diffusion coefficients of potassium poly(oxyethylene glycolate) macromolecules and solvent molecules (acetone) and the variation in the dimensions of supramolecular structures of potassium poly(oxyethylene glycolate) with temperature and its concentration in acetone are measured. It is discovered that the temperature dependences of change in the rate constants of reactions that proceed during the interaction of potassium poly(oxyethylene glycolate) with 2,4-toluylene diisocyanate do not fit Arrhenius coordinates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号