首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reaction thermodynamics and potential energy surfaces are calculated using density functional methods to investigate possible reactive Cu/O(2) species for H-atom abstraction in peptidylglycine alpha-hydroxylating monooxygenase (PHM), which has a noncoupled binuclear Cu active site. Two possible mononuclear Cu/O(2) species have been evaluated, the 2-electron reduced Cu(II)(M)-OOH intermediate and the 1-electron reduced side-on Cu(II)(M)-superoxo intermediate, which could form with comparable thermodynamics at the catalytic Cu(M) site. The substrate H-atom abstraction reaction by the Cu(II)(M)-OOH intermediate is found to be thermodynamically accessible due to the contribution of the methionine ligand, but with a high activation barrier ( approximately 37 kcal/mol, at a 3.0-A active site/substrate distance), arguing against the Cu(II)(M)-OOH species as the reactive Cu/O(2) intermediate in PHM. In contrast, H-atom abstraction from substrate by the side-on Cu(II)(M)-superoxo intermediate is a nearly isoenergetic process with a low reaction barrier at a comparable active site/substrate distance ( approximately 14 kcal/mol), suggesting that side-on Cu(II)(M)-superoxo is the reactive species in PHM. The differential reactivities of the Cu(II)(M)-OOH and Cu(II)(M)-superoxo species correlate to their different frontier molecular orbitals involved in the H-atom abstraction reaction. After the H-atom abstraction, a reasonable pathway for substrate hydroxylation involves a "water-assisted" direct OH transfer to the substrate radical, which generates a high-energy Cu(II)(M)-oxyl species. This provides the necessary driving force for intramolecular electron transfer from the Cu(H) site to complete the reaction in PHM. The differential reactivity pattern between the Cu(II)(M)-OOH and Cu(II)(M)-superoxo intermediates provides insight into the role of the noncoupled nature of PHM and dopamine beta-monooxygenase active sites, as compared to the coupled binuclear Cu active sites in hemocyanin, tyrosinase, and catechol oxidase, in O(2) activation.  相似文献   

2.
The coordination chemistry of the tetradentate ligand N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diaminobiphenyl H(4)L has been studied with the copper(II), nickel(II), palladium(II), iron(III), and vanadium(V) ions. The ligand is non-innocent in the sense that it is readily oxidized in the presence of air to its o-iminobenzosemiquinonato (L(**))(2-) radical form. The crystal structures of the diradical compounds, [Cu(II)(L(**))] 1, [Ni(II)(L(**))] 2, [Pd(II)(L(**))] 3, the monoradical high-spin compound [Fe(III)(HL(*))Cl] 4, and the di(mu-methoxo)divanadium(V) compound [L(2)V(2)(mu-OCH(3))(2)] 5 without a radical have been determined by X-ray crystallography at 100 K. The biphenyl backbone of the ligand induces a tetrahedral distortion of the metal(II) geometry in 1, 2, and 3 having a N(2)O(2) coordination environment. The dihedral angles between the metal planes are 35.5 degrees for 1, 30.8 degrees for 2, and 22.2 degrees for 3. Variable-temperature (2-290 K) magnetic susceptibility measurements together with Mossbauer and electron paramagnetic resonance (EPR) spectroscopy establish the electronic structures of the complexes. Electrochemical cyclic voltammetric measurements indicate four one-electron reversible redox processes of the ligand for 1, 2, and 3. Complex 1 is found to catalyze the aerial oxidation of benzylalcohol to benzaldehyde, thus modeling the catalytic function of the copper-containing enzyme Galactose Oxidase (GO). Kinetic measurements in conjunction with EPR and UV-vis spectroscopic studies have been used to decipher the catalytic oxidation process. A ligand-derived redox activity has been proposed as a mechanism in which complex 1 disproportionates in a basic medium to generate the catalytically active species. An "on-off" mechanism of the radicals without apparent participation of the metal center is invoked for the catalytic process, whose intimate mechanism thus differs from that of the enzyme Galactose Oxidase.  相似文献   

3.
Dicopper(II) complexes of a series of different pyrazolate-based dinucleating ligands [L1](-)-[L4](-) have been synthesized and characterized structurally and spectroscopically. A major difference between the four complexes is the individual metal-metal separation that is enforced by the chelating side arms of the pyrazolate ligand scaffold: it varies from 3.45 A in 2 x (BF4)4 to 4.53 A in 4 x (ClO4)2. All complexes have been evaluated as model systems for the catechol oxidase enzyme by using 3,5-di-tert-butylcatechole (DTBC) as the test substrate. They were shown to exhibit very different catecholase activities ranging from very efficient to poor catalysts (k(obs) between 2430+/-202 and 22.8+/-1.2 h(-1)), with an order of decreasing activity 2 x (ClO4)4 > 1 x (ClO4)2 > 3 x (ClO4)2 > 4 x (ClO4)2. A correlation of the catecholase activities with the variation in Cu...Cu distances, as well as other effects resulting from the distinct redox potentials, neighboring groups, and the individual coordination spheres are discussed. Saturation behavior for the rate dependence on substrate concentration was observed in only two cases, that is, for the most active 2 x (ClO4)4 and for the least active 4 x (ClO4)2, whereas a catalytic rate that is almost independent of substrate concentration (within the range studied) was observed for 1 x (ClO4)2 and 3 x (ClO4)2. H2O2 was detected as the product of O2 reduction in the catecholase reaction of the three most active systems. The structures of the adducts of "L3Cu2" and "L4Cu2" with a substrate analogue (tetrachlorocatecholate, TCC) suggest a bidentate substrate coordination to only one of the copper ions for those catalysts that feature short ligand side arms and correspondingly exhibit larger metal-metal separations; this possibly contributes to the lower activity of these systems. TCC binding is supported by several H-bonding interactions to water molecules at the adjacent copper or to ligand-side-arm N-donors; this emphasizes the importance of functional groups in proximity to the bimetallic active site.  相似文献   

4.
A series of dicopper(II) complexes have been investigated as model systems for the catechol oxidase active site enzyme, regarding the binding of catechol substrate in the first step of the catalytic cycle. The [Cu(2)(L(R))(mu-OH)](ClO(4))(2) and [Cu(2)(L(R))(H(2)O)(2)](ClO(4))(3) complexes are based on the L(R) ligands (2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-R-substituted phenol) with -R = -OCH(3), -CH(3), or -F. Binding studies of diphenol substrates were investigated using UV-vis and EPR spectroscopy, electrochemistry, and (19)F NMR (fluorinated derivatives). All the complexes are able to bind two ortho-diphenol substrates (tetrachlorocatechol and 3,5-di-tert-butylcatechol). Two successive fixation steps, respectively fast and slower, were evidenced for the mu-OH complexes (the bis(aqua) complexes are inactive in catalysis) by stopped-flow measurement and (19)F NMR. From the mu-OH species, the 1:1 complex/substrate adduct is the catalytically active form. In relation with the substrate specificity observed in the enzyme, different substrate/inhibitor combinations were also examined. These studies enabled us to propose that ortho-diphenol binds monodentately one copper(II) center with the concomitant cleavage of the OH bridge. This hydroxo ligand appears to be a key factor to achieve the complete deprotonation of the catechol, leading to a bridging catecholate.  相似文献   

5.
We present here results of a series of density functional theory (DFT) studies on enzyme active site models of nitric oxide synthase (NOS) and address the key steps in the catalytic cycle whereby the substrate (L-arginine) is hydroxylated to N(omega)-hydroxo-arginine. It has been proposed that the mechanism follows a cytochrome P450-type catalytic cycle; however, our calculations find an alternative low energy pathway whereby the bound L-arginine substrate has two important functions in the catalytic cycle, namely first as a proton donor and later as the substrate in the reaction mechanism. Thus, the DFT studies show that the oxo-iron active species (compound I) cannot abstract a proton and neither a hydrogen atom from protonated L-arginine due to the strength of the N-H bonds of the substrate. However, the hydroxylation of neutral arginine by compound I and its one electron reduced form (compound II) requires much lower barriers and is highly exothermic. Detailed analysis of proton transfer mechanisms shows that the basicity of the dioxo dianion and the hydroperoxo-iron (compound 0) intermediates in the catalytic cycle are larger than that of arginine, which makes it likely that protonated arginine donates one of the two protons needed during the first catalytic cycle of NOS. Therefore, DFT predicts that in NOS enzymes arginine binds to the active site in its protonated form, but is deprotonated during the oxygen activation process in the catalytic cycle by either the dioxo dianion species or compound 0. As a result of the low ionization potential of neutral arginine, the actual hydroxylation reaction starts with an initial electron transfer from the substrate to compound I to create compound II followed by a concerted hydrogen abstraction/radical rebound from the substrate. These studies indicate that compound II is the actual oxidant in NOS enzymes that performs the hydroxylation reaction of arginine, which is in sharp contrast with the cytochromes P450 where compound II was shown to be a sluggish oxidant. This is the first example of an enzyme where compound II is able to participate in the reaction mechanism. Moreover, arginine hydroxylation by NOS enzymes is catalyzed in a significantly different way from the cytochromes P450 although the active sites of the two enzyme classes are very similar in structure. Detailed studies of environmental effects on the reaction mechanism show that environmental perturbations as appear in the protein have little effect and do not change the energies of the reaction. Finally, a valence bond curve crossing model has been set up to explain the obtained reaction mechanisms for the hydrogen abstraction processes in P450 and NOS enzymes.  相似文献   

6.
Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (pH 7.0) or acetate (from buffer,pH 4-5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X = Cl 1, NCS 2, CH3COO 3, ClO4 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,N-dimethylethylenediamine and N,N’-dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2(L5) = N,N-dimethyl-N’,N’-bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N’-dimethyl-N,N’-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively. Interestingly, for the latter complex there are two different molecules present in the same unit cell containing the methyl groups of the ethylenediamine fragmentcis to each other in one molecule andtrans to each other in the other. The ligand field and EPR spectra of the model complexes reveal square-based geometries even in solution. The electrochemical and chemical means of generating novel radical species of the model complexes, analogous to the active form of the enzyme is presently under investigation.  相似文献   

7.
Lipoxygenases are mononuclear non-heme iron enzymes that regio- and stereospecifcally convert 1,4-pentadiene subunit-containing fatty acids into alkyl peroxides. The rate-determining step is generally accepted to be hydrogen atom abstraction from the pentadiene subunit of the substrate by an active ferric hydroxide species to give a ferrous water species and an organic radical. Reported here are the synthesis and characterization of a ferric model complex, [Fe(III)(PY5)(OMe)](OTf)(2), that reacts with organic substrates in a manner similar to the proposed enzymatic mechanism. The ligand PY5 (2,6-bis(bis(2-pyridyl)methoxymethane)pyridine) was developed to simulate the histidine-dominated coordination sphere of mammalian lipoxygenases. The overall monoanionic coordination provided by the endogenous ligands of lipoxygenase confers a strong Lewis acidic character to the active ferric site with an accordingly positive reduction potential. Incorporation of ferrous iron into PY5 and subsequent oxidation yields a stable ferric methoxide species that structurally and chemically resembles the proposed enzymatic ferric hydroxide species. Reactivity with a number of hydrocarbons possessing weak C-H bonds, including a derivative of the enzymatic substrate linoleic acid, scales best with the substrates' bond dissociation energies, rather than pK(a)'s, suggesting a hydrogen atom abstraction mechanism. Thermodynamic analysis of [Fe(III)(PY5)(OMe)](OTf)(2) and the ferrous end-product [Fe(II)(PY5)(MeOH)](OTf)(2) estimates the strength of the O-H bond in the metal bound methanol in the latter to be 83.5 +/- 2.0 kcal mol(-1). The attenuation of this bond relative to free methanol is largely due to the high reduction potential of the ferric site, suggesting that the analogously high reduction potential of the ferric site in LO is what allows the enzyme to perform its unique oxidation chemistry. Comparison of [Fe(III)(PY5)(OMe)](OTf)(2) to other coordination complexes capable of hydrogen atom abstraction shows that, although a strong correlation exists between the thermodynamic driving force of reaction and the rate of reaction, other factors appear to further modulate the reactivity.  相似文献   

8.
The distance and relative orientation of the C5' methyl group of 5'-deoxyadenosine and the substrate radical in vitamin B(12) coenzyme-dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band two-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The (S)-2-aminopropanol-generated substrate radical catalytic intermediate was prepared by cryotrapping steady-state mixtures of enzyme in which catalytically exchangeable hydrogen sites in the active site had been labeled by previous turnover on (2)H(4)-ethanolamine. Simulation of the time- and frequency-domain ESEEM requires two types of coupled (2)H. The strongly coupled (2)H has an effective dipole distance (r(eff)) of 2.2 A, and isotropic coupling constant (A(iso)) of -0.35 MHz. The weakly coupled (2)H has r(eff) = 3.8 A and A(iso) = 0 MHz. The best (2)H ESEEM time- and frequency-domain simulations are achieved with a model in which the hyperfine couplings arise from one strongly coupled hydrogen site and two equivalent weakly coupled hydrogen sites located on the C5' methyl group of 5'-deoxyadenosine. This model indicates that the unpaired electron on C1 of the substrate radical and C5' are separated by 3.2 A and are thus at closest contact. The close proximity of C1 and C5' indicates that C5' of the 5'-deoxyadenosyl moiety directly mediates radical migration between cobalt in cobalamin and the substrate/product site over a distance of 5-7 A in the active site of ethanolamine deaminase.  相似文献   

9.
The coordination ability of the electroactive TTF-based chelating ligand 5,5'-bis(4,5-bis(thiomethyl)-4'-carbamoyltetrathiafulvalene)-2,2'-bipyridine (L) has been tested with Cu(I) and Cu(II) centres. [(L)2Cu(I)](PF6), [(L)2Cu(II)](OTf)2 and [(L)Cu(II)(DMF)3](OTf)2 have been synthesized. A single-crystal X-ray analysis was performed on [(L)Cu(II)(DMF)3](OTf)2, showing a distorted octahedral geometry around the Cu(II) centre, and the formation of dimeric units in the solid state through weak coordination in apical position of an amide oxygen atom from a neighbouring complex. Magnetic data show that the paramagnetic metallic centres are isolated, in agreement with the solid-state structure. Electrochemical measurements were performed on the three complexes and in all cases the Cu(I)/Cu(II) and TTF/TTF+*/TTF2+ redox processes were observed.  相似文献   

10.
Four copper complexes of a tridentate Schiff base ligand, 2-pyridyl-N-(2'-methylthiophenyl) methyleneimine, L(1) have been synthesized. All theses species, namely, [L(1)Cu(2)(SCN)(3)](n) (1), [Cu(SCN)(CH(3)CN)](n) (3), [(L(1))Cu(N(3))(Cl)] (4) and [(L(1))Cu(N(3))(SCN)] (5) have been structurally characterized. Complex 1 in acetonitrile promotes cycloaddition of a Cu(II) bound SCN(-) ion to L(1) that exclusively and stoichiometrically forms a mesoionic imidazo[1,5-a]pyridine, namely, 3-(imino-N'-2-methylthiophenyl)imidazo[1,5-a]pyridinium-1-thiolate (2) and a thiocyanato bridged Cu(i) complex, [Cu(SCN)(CH(3)CN)](n) (3). The X-ray crystal structure of 1 confirms the presence of square-pyramidal Cu(II) and tetrahedral Cu(I) ions in N(3)S(2) and N(2)S(2) coordination environments, respectively, bridged to each other via thiocyanate anion. The Cu(II) ions are bonded to a tridentate ligand L(1) and two SCN(-) ions occupy the remaining equatorial and an axial coordination site to adopt a square-pyramidal coordination geometry. To investigate which SCN(-) ion, axially or equatorially bound to Cu(II) center, underwent cycloaddition to L(1) to form 2, two mononuclear Cu(II) complexes 4 and 5 have been synthesized and their reactivity towards externally added KSCN was studied. The molecular structures of 4 and 5 feature a meridionally bound L(1) and an azide ion (N(3)(-)) in the square plane, while a Cl(-) or SCN(-) ion are occupying the axial site, respectively, to fulfill square-pyramidal coordination geometry. Complex 4 reacts with SCN(-) ion to form 5. That an MeCN solution of 5 itself, or of 5 in the presence of KSCN, does not produce 2, supports that possibly the Cu(II) bound equatorial SCN(-) ion is responsible for cycloaddition to L(1). Dark purple solid 2 has also been prepared (turnover number ~4 or 41% yield) efficiently following an alternative and easier one-pot synthesis procedure, that is from a mixture of KSCN and L(1) in the presence of a catalytic amount of anhydrous CuCl(2) (10 mol%) in MeCN in air. The X-ray crystal structure, (1)H NMR spectrum and solution conductivity measurements strongly support that 2 is mesoionic. An MeCN solution of 2 fluoresces at room temperature upon excitation at 240 nm with an emission maximum λ(em) at 470 nm, associated with a quantum yield of 0.16 with respect to a standard Rhodamine-6G fluorophore.  相似文献   

11.
We propose a non‐radical mechanism for the conversion of methane into methanol by soluble methane monooxygenase (sMMO), the active site of which involves a diiron active center. We assume the active site of the MMOHQ intermediate, exhibiting direct reactivity with the methane substrate, to be a bis(μ‐oxo)diiron(IV ) complex in which one of the iron atoms is coordinatively unsaturated (five‐coordinate). Is it reasonable for such a diiron complex to be formed in the catalytic reaction of sMMO? The answer to this important question is positive from the viewpoint of energetics in density functional theory (DFT) calculations. Our model thus has a vacant coordination site for substrate methane. If MMOHQ involves a coordinatively unsaturated iron atom at the active center, methane is effectively converted into methanol in the broken‐symmetry singlet state by a non‐radical mechanism; in the first step a methane C? H bond is dissociated via a four‐centered transition state (TS1) resulting in an important intermediate involving a hydroxo ligand and a methyl ligand, and in the second step the binding of the methyl ligand and the hydroxo ligand through a three‐centered transition state (TS2) results in the formation of a methanol complex. This mechanism is essentially identical to that of the methane–methanol conversion by the bare FeO+ complex and relevant transition metal–oxo complexes in the gas phase. Neither radical species nor ionic species are involved in this mechanism. We look in detail at kinetic isotope effects (KIEs) for H atom abstraction from methane on the basis of transition state theory with Wigner tunneling corrections.  相似文献   

12.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

13.
Comba P  Lienke A 《Inorganic chemistry》2001,40(20):5206-5209
Approximative density-functional theory calculations indicate that the tetradentate ligand L (L = 2,4-bis-(2-pyridyl)-3,7-diaza-[3.3.1]-bicyclononane) enforces an unusual and strong binding of a co-ligand (substrate) to a copper(II) center. The co-ligand in [Cu(L)(Cl)](+) completes a square-pyramidal coordination around copper(II) and binds in the equatorial plane rather than on the apical position. This configuration is a stable geometric isomer for the model complex [Cu(NH3)2(imine)2(Cl)](+), but it is disfavored by approximately 10 kJ mol(-1) and not commonly observed for CuN4 chromophores with a monodentate co-ligand. The equatorial coordination increases the bond energy of the copper(II)-chloride bond by approximately 80 kJ mol(-1), and similar results are expected for other copper(II)-L-substrate complexes, some of which show strong catalytic activity or unusual stability. Despite the enforced configuration, L does not impose significant steric strain on the copper(II) center but is well preorganized for the Jahn-Teller labile ion in this unusual geometry. The preorganization extends to the orientation of the pyridine donors (torsion angle around the copper-pyridine bond), and this seems to be of importance in the reactivity of the copper-L complexes and their derivatives.  相似文献   

14.
The cooperative action of multiple Cu(II) nuclear centers is shown to be effective and selective in the hydrolysis of 2'-5' and 3'-5' ribonucleotides. Reported herein is the specific catalysis by two trinuclear Cu(II) complexes of L3A and L3B. Pseudo first-order kinetic studies reveal that the L3A trinuclear Cu(II) complex effects hydrolysis of Up(2'-5')U with a rate constant of 28 x 10(-)(4) min(-)(1) and Up(3'-5')U with a rate constant of 0.5 x 10(-)(4) min(-)(1). The hydrolyses of Ap(3'-5')A and Ap(2'-5')A proceed with rate constants of 24 x 10(-)(4) min(-)(1) and 0.5 x 10(-)(4) min(-)(1) respectively. The L3A trinuclear Cu(II) complex demonstrates high specificity for Up(2'-5')U and Ap(3'-5')A. Similar studies with the more rigid L3B trinuclear Cu(II) complex shows no selectivity and yields lower rate constants for hydrolysis. The selectivity observed with the L3A ligand is attributed to the geometry of the ligand-bound diribonucleotide which ultimately dictates the proximity of the attacking hydroxyl and the phosphoester to a Cu(II) center for activation and subsequent hydrolysis.  相似文献   

15.
The mechanism of cobalt(II) porphyrin-catalyzed benzylic C-H bond amination of ethylbenzene, toluene, and 1,2,3,4-tetrahydronaphthalene (tetralin) using a series of different organic azides [N(3)C(O)OMe, N(3)SO(2)Ph, N(3)C(O)Ph, and N(3)P(O)(OMe)(2)] as nitrene sources was studied by means of density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) spectroscopy. The DFT computational study revealed a stepwise radical process involving coordination of the azide to the metal center followed by elimination of dinitrogen to produce unusual "nitrene radical" intermediates (por)Co(III)-N(?)Y (4) [Y = -C(O)OMe, -SO(2)Ph, -C(O)Ph, -P(O)(OMe)(2)]. Formation of these nitrene radical ligand complexes is exothermic, predicting that the nitrene radical ligand complexes should be detectable species in the absence of other reacting substrates. In good agreement with the DFT calculations, isotropic solution EPR signals with g values characteristic of ligand-based radicals were detected experimentally from (por)Co complexes in the presence of excess organic azide in benzene. They are best described as nitrene radical anion ligand complexes (por)Co(III)-N(?)Y, which have their unpaired spin density located almost entirely on the nitrogen atom of the nitrene moiety. These key cobalt(III)-nitrene radical intermediates readily abstract a hydrogen atom from a benzylic position of the organic substrate to form the intermediate species 5, which are close-contact pairs of the thus-formed organic radicals R'(?) and the cobalt(III)-amido complexes (por)Co(III)-NHY ({R'(?)···(por)Co(III)-NHY}). These close-contact pairs readily collapse in a virtually barrierless fashion (via transition state TS3) to produce the cobalt(II)-amine complexes (por)Co(II)-NHYR', which dissociate to afford the desired amine products NHYR' (6) with regeneration of the (por)Co catalyst. Alternatively, the close-contact pairs {R'(?)···(por)Co(III)-NHY} 5 may undergo β-hydrogen-atom abstraction from the benzylic radical R'(?) by (por)Co(III)-NHY (via TS4) to form the corresponding olefin and (por)Co(III)-NH(2)Y, which dissociates to give Y-NH(2). This process for the formation of olefin and Y-NH(2) byproducts is also essentially barrierless and should compete with the collapse of 5 via TS3 to form the desired amine product. Alternative processes leading to the formation of side products and the influence of different porphyrin ligands with varying electronic properties on the catalytic activity of the cobalt(II) complexes have also been investigated.  相似文献   

16.
An active-site analog of the radical copper enzyme galactose oxidase has been prepared from a synthetic tripod chelate ((2-pyridylmethyl)[(2-hydroxy-3,5-dimethylphenyl)methyl][(2-hydroxy-5-methyl-3-(methylthio)phenyl)methyl]amine, duncamine (dnc)) that binds a single Cu(II) ion through phenolate, thioether-substituted phenolate, and pyridylamine arms. The Cu complex crystallizes as a dinucleated dimer bridged by phenolate oxygens, and the structure has been determined by X-ray crystallography. Addition of pyridine (or other coordinating bases) dissociates the complex into a monomeric derivative that has been characterized spectroscopically (optical absorption and EPR) and electrochemically. The model provides insight into the properties of a mutant form of galactose oxidase which retains the same copper ligand complement as the wild type protein but lacks catalytic activity.  相似文献   

17.
The molecular basis of the hydroxylation reaction of the Calpha of a C-terminal glycine catalyzed by peptidylglycine alpha-hydroxylating monooxygenase (PHM) was investigated using hybrid quantum-classical (QM-MM) computational techniques. We have identified the most reactive oxygenated species and presented new insights into the hydrogen abstraction (H-abstraction) mechanism operative in PHM. Our results suggest that O(2) binds to Cu(B) to generate Cu(B)(II)-O(2)(.-) followed by electron transfer (ET) from Cu(A) to form Cu(B)(I)-O(2)(.-). The computed potential energy profiles for the H-abstraction reaction for Cu(B)(II)-O(2)(.-), Cu(B)(I)-O(2)(.-), and [Cu(B)(II)-OOH](+) species indicate that none of these species can be responsible for abstraction. However, the latter species can spontaneously form [Cu(B)O](+2) (which consists of a two-unpaired-electrons [Cu(B)O](+) moiety ferromagnetically coupled with a radical cation located over the three Cu(B) ligands, in the quartet spin ground state) by abstracting a proton from the surrounding solvent. Both this monooxygenated species and the one obtained by reduction with ascorbate, [Cu(B)O](+), were found to be capable of carrying out the H-abstraction; however, whereas the former abstracts the hydrogen atom concertedly with almost no activation energy, the later forms an intermediate that continues the reaction by a rebinding step. We propose that the active species in H-abstraction in PHM is probably [Cu(B)O](+2) because it is formed exothermically and can concertedly abstract the substrate HA atom with the lower overall activation energy. Interestingly, this species resembles the active oxidant in cytochrome P450 enzymes, Compound I, suggesting that both PHM and cytochrome P450 enzymes may carry out substrate hydroxylation by using a similar mechanism.  相似文献   

18.
The coordination chemistry of the tridentate ligand N-(2-hydroxy-3,5-di-tert-butylphenyl)-2-aminobenzylalcohol H3L has been studied with the copper(II) ion. The ligand is noninnocent in the sense that it is readily oxidized in the presence of air to its o-iminobenzosemiquinonato [L*]2- radical form. The crystal structure of the synthesized tetracopper(II)-tetraradical complex [CuII4(L*)4] (1), has been determined by X-ray crystallography at 100 K. Variable-temperature (2-290 K) magnetic susceptibility measurements of complex 1 containing eight paramagnetic centers establish the spin ground state to be diamagnetic (St=0) arising from the antiferromagnetic interactions. Electrochemical measurements (cyclic voltammograms and square wave voltammograms) indicate four one-electron reductions of the ligand prior to the reduction of the metal center. Complex 1 is found to catalyze the aerial oxidation of 2-aminophenol to 2-amino-phenoxazine-3-one, thus modeling the catalytic function of the copper-containing enzyme phenoxazinone synthase. Kinetic measurements together with electron paramagnetic resonance and electronic spectral studies have been used to decipher the complex six-electron oxidative coupling of 2-aminophenol. An "on-off" mechanism of the radicals together with redox participation of the metal center is proposed for the catalytic oxidation processes.  相似文献   

19.
The synthesis of the new terpyridine-containing macrocycle 2,5,8,11,14-pentaaza[15](6,6' ')cyclo(2,2':6',2' ')terpyridinophane (L) is reported. The ligand contains a pentaamine chain linking the 6,6' ' positions of a terpyridine unit. A potentiometric, (1)H NMR, UV-vis spectrophotometric and fluorescence emission study on the acid-base properties of L in aqueous solutions shows that the first four protonation steps occur on the polyamine chain, whereas the terpyridine nitrogens are involved in proton binding only at strongly acidic pH values. L can form both mono- and dinuclear Cu(II), Zn(II), Cd(II), and Pb(II) complexes in aqueous solution. The crystal structures of the Zn(II) and Cd(II) complexes ([ZnLH](2)(micro-OH))(ClO(4))(5) (6) and ([CdLH](2)(micro-Br))(ClO(4))(5).4H(2)O (7) show that two mononuclear [MLH](3+) units are coupled by a bridging anion (OH(-) in 6 and Br(-) in 7) and pi-stacking interactions between the terpyridine moieties. A potentiometric and spectrophotometric study shows that in the case of Cu(II) and Zn(II) the dimeric assemblies are also formed in aqueous solution containing the ligand and the metals in a 1:1 molar ratio. Protonation of the complexes or the addition of a second metal ion leads to the disruption of the dimers due to the increased electrostatic repulsions between the two monomeric units.  相似文献   

20.
Hou L  Li D  Shi WJ  Yin YG  Ng SW 《Inorganic chemistry》2005,44(22):7825-7832
Six mixed-valence Cu(I)Cu(II) compounds containing 4'-(4-pyridyl)-2,2':6',2' '-terpyridine (L1) or 4'-(2-pyridyl)-2,2':6',2' '-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl(2).2H(2)O or Cu(CH(3)COO)(2).H(2)O with the L1 ligand and NH(4)SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu(I)Cu(II) compounds [Cu(2)(L1)(mu-1,1-SCN)(mu-Cl)Cl](n) (1), [Cu(2)(L1)(mu-I)(2)Cl](n) (2), [Cu(2)(L1)(mu-Br)(2)Br](n) (3), and [Cu(2)(L1)(mu-1,3-SCN)(2)(SCN)](n)(4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M(4)L(4) or M(6)L(6) building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M(4)L(4) units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH(3)COO)(2).H(2)O with L2 and NH(4)SCN under hydrothermal conditions gave mixed-valence Cu(I)Cu(II) compound [Cu(2)(L2)(mu-1,3-SCN)(3)](n) (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号