共查询到18条相似文献,搜索用时 62 毫秒
2.
距离选通式水下激光成像技术是一种能够有效抑制水介质的后向散射效应的探测技术,在海洋研究、深海探测和水下作业领域中拥有广阔的应用前景。然而在水下激光图像中出现的散斑噪声和灰度不均匀现象使得实现目标的准确分割较为困难。通过分析散斑噪声形成的机理,提出了一种水下激光图像的有效分割方法。该方法根据像素的噪声响应和灰度分布特性自适应确定各神经元的关键参数,并对噪声位置的神经元的行为进行抑制,基于最大二维Renyi熵准则采用梯度下降法确定了神经元的动态阈值,通过实验结果的比较分析说明该方法明显优于Normalized Cut、模糊C均值、均值漂移和分水岭分割方法,而运行时间约为常规脉冲耦合神经网络的五分之一。 相似文献
3.
基于图的加权核K均值的图像多尺度分割 总被引:2,自引:0,他引:2
提出改进的最小割(IMC)模型以避免分割出小的孤立点集,研究了改进的最小割模型与加权核K均值之间的等价关系,列举了几种常见的用于建立图割模型边权值的相似度函数,并分析了其对分割结果的影响.在此基础上.设计了一个摹于图的加权核K均值图像多尺度分割方法,该方法既避免了基于图割的图像分割中图谱的求解问题,又避免了加权核K均值方法中核矩阵的选取问题,同时实现了对图像多尺度的分割.通过对该方法进行抗噪性能的分析,以及在光学图像上对实验结果进行比较,验证了所提出方法的有效性. 相似文献
4.
5.
6.
为了自动地进行图像的多值分割,从原始图像与分割图像之间的相互关系出发,以最大互信息为优化分割目标,以互信息熵差作为一种新的分类类数判据,在对传统脉冲耦合神经网络模型改进的基础上,提出了一种基于最大互信息改进型脉冲耦合神经网络图像多值分割算法.理论分析和实验结果表明,该方法能够自动确定最佳分割迭代次数及最佳分割灰度类数,对分割图像具有良好的特征划分能力,且在分割类数较少的情况下,能较好地保持图像细节、纹理及边缘等信息,对不同图像分割准确度高,具有较强的适用性. 相似文献
7.
距离选通式水下激光成像技术是一种能够有效抑制水介质的后向散射效应的探测技术,在海洋研究、深海探测和水下作业领域中拥有广阔的应用前景。然而在水下激光图像中出现的散斑噪声和灰度不均匀现象使得实现目标的准确分割较为困难。通过分析散斑噪声形成的机理,提出了一种水下激光图像的有效分割方法。该方法根据像素的噪声响应和灰度分布特性自适应确定各神经元的关键参数,并对噪声位置的神经元的行为进行抑制,基于最大二维Renyi熵准则采用梯度下降法确定了神经元的动态阈值,通过实验结果的比较分析说明该方法明显优于Normalized Cut、模糊C均值、均值漂移和分水岭分割方法,而运行时间约为常规脉冲耦合神经网络的五分之一。 相似文献
8.
三维脑胶质瘤磁共振成像肿瘤形状各异、边缘模糊,目前大多数基于2D卷积神经网络的分割方法不能很好的分割三维图像。为了能够准确分割出三维图像中的肿瘤部分,提出一种融合多尺度特征信息的3D卷积神经网络脑肿瘤图像分割方法。利用并行的3D空洞卷积提取特征信息,将不同感受野的信息融合。将Dice损失和BCE损失结合,形成一种新的损失函数并配合恒等映射,进一步提高分割精度。在BraTs2020数据集上对模型进行验证,结果表明,该模型分割的全肿瘤区、核心区和增强区的Dice系数分别为89.1%、83.9%和82.6%。在LGG脑部肿瘤图像数据集上对模型进行验证,结果表明,Dice系数达到了93.3%。所提出的分割方法不仅能够精确的分割三维脑胶质瘤图像,而且同样适用于分割二维脑胶质瘤图像。 相似文献
9.
提出了一种基于多尺度特征融合的全卷积神经网络的视网膜血管分割方法,无需手工设计特征和后处理过程。利用跳跃连接构建编码器-解码器结构全卷积神经网络,将高层语义信息和低层特征信息进行融合;利用残差块进一步学习细节和纹理特征;利用不同空洞率的空洞卷积构建多尺度空间金字塔池化结构,进一步扩大感受野,充分结合图像上下文信息;采用类别平衡损失函数解决正负样本不均衡问题。实验结果表明,在DRIVE(Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)数据集上的准确率分别为95.46%和96.84%,敏感性分别为80.53%和82.99%,特异性分别为97.67%和97.94%,受试者工作特征(ROC)曲线下的面积分别为97.71%和98.17%。所提方法相较于其他方法性能更优。 相似文献
10.
针对传统的遥感图像分割算法由于计算复杂等原因,造成图像的分割分辨率低,清晰度不高,当图像中的信息量非常大时,对图像分割非常耗时等问题缺陷,为了有效地分割图像,提出了一种改进的多粒度原理和小波算法相结合的遥感图像分割算法;该方法首先采用小波变换对图像的弧度直方图进行小波多尺度变换,并进行分解操作,然后采用粒度合成技术对分解后的图像进行合成;文中采用的是256×256的SAR图像来进行实验对比,结果表明,提出的算法有效地改善了分割效果,分割出的图像边缘效果明显清晰,证明了该算法的可行性和有效性。 相似文献
11.
Jiakai Liang Ruixue Li Chao Wang Rulin Zhang Keqiang Yue Wenjun Li Yilin Li 《Entropy (Basel, Switzerland)》2022,24(11)
Burn is a common traumatic disease. After severe burn injury, the human body will increase catabolism, and burn wounds lead to a large amount of body fluid loss, with a high mortality rate. Therefore, in the early treatment for burn patients, it is essential to calculate the patient’s water requirement based on the percentage of the burn wound area in the total body surface area (TBSA%). However, burn wounds are so complex that there is observer variability by the clinicians, making it challenging to locate the burn wounds accurately. Therefore, an objective, accurate location method of burn wounds is very necessary and meaningful. Convolutional neural networks (CNNs) provide feasible means for this requirement. However, although the CNNs continue to improve the accuracy in the semantic segmentation task, they are often limited by the computing resources of edge hardware. For this purpose, a lightweight burn wounds segmentation model is required. In our work, we constructed a burn image dataset and proposed a U-type spiking neural networks (SNNs) based on retinal ganglion cells (RGC) for segmenting burn and non-burn areas. Moreover, a module with cross-layer skip concatenation structure was introduced. Experimental results showed that the pixel accuracy of the proposed reached 92.89%, and our network parameter only needed 16.6 Mbytes. The results showed our model achieved remarkable accuracy while achieving edge hardware affinity. 相似文献
12.
In the research of using Radial Basis Function Neural Network (RBF NN) forecasting nonlinear timeseries, we investigate how the different clusterings affect the process of learning and forecasting. We find that k-meansclustering is very suitable. In order to increase the precision we introduce a nonlinear feedback term to escape from thelocal minima of energy, then we use the model to forecast the nonlinear time series which are produced by Mackey-Glassequation and stocks. By selecting the k-means clustering and the suitable feedback term, much better forecasting resultsare obtained. 相似文献
13.
In this work, we formulate the image in-painting as a matrix completion problem. Traditional matrix completion methods are generally based on linear models, assuming that the matrix is low rank. When the original matrix is large scale and the observed elements are few, they will easily lead to over-fitting and their performance will also decrease significantly. Recently, researchers have tried to apply deep learning and nonlinear techniques to solve matrix completion. However, most of the existing deep learning-based methods restore each column or row of the matrix independently, which loses the global structure information of the matrix and therefore does not achieve the expected results in the image in-painting. In this paper, we propose a deep matrix factorization completion network (DMFCNet) for image in-painting by combining deep learning and a traditional matrix completion model. The main idea of DMFCNet is to map iterative updates of variables from a traditional matrix completion model into a fixed depth neural network. The potential relationships between observed matrix data are learned in a trainable end-to-end manner, which leads to a high-performance and easy-to-deploy nonlinear solution. Experimental results show that DMFCNet can provide higher matrix completion accuracy than the state-of-the-art matrix completion methods in a shorter running time. 相似文献
14.
Nonlinear Time Series Prediction
Using Chaotic Neural Networks 总被引:1,自引:0,他引:1
LIKe-Ping CHENTian-Lun 《理论物理通讯》2001,35(6):759-762
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network,the network becomes a chaotic one.For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting,we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation.By selecting the suitable feedback term,the system can escape from the local minima and converge to the global minimum or its approximate solutions,and the forecasting results are better than those of backpropagation algorithm. 相似文献
15.
ZHENGXin CHENTian-Lun 《理论物理通讯》2003,40(2):165-168
In the research of using Radial Basis Function Neural Network (RBF NN) forecasting nonlinear time series, we investigate how the different clusterings affect the process of learning and forecasting. We find that k-means clustering is very suitable. In order to increase the precision we introduce a nonlinear feedback term to escape from the local minima of energy, then we use the model to forecast the nonlinear time series which are produced by Mackey-Glass equation and stocks. By selecting the k-means clustering and the suitable feedback term, much better forecasting results are obtained. 相似文献
16.
Image steganography is a scheme that hides secret information in a cover image without being perceived. Most of the existing steganography methods are more concerned about the visual similarity between the stego image and the cover image, and they ignore the recovery accuracy of secret information. In this paper, the steganography method based on invertible neural networks is proposed, which can generate stego images with high invisibility and security and can achieve lossless recovery for secret information. In addition, this paper introduces a mapping module that can compress information actually embedded to improve the quality of the stego image and its antidetection ability. In order to restore message and prevent loss, the secret information is converted into a binary sequence and then embedded in the cover image through the forward operation of the invertible neural networks. This information will then be recovered from the stego image through the inverse operation of the invertible neural networks. Experimental results show that the proposed method in this paper has achieved competitive results in the visual quality and safety of stego images and achieved 100% accuracy in information extraction. 相似文献
17.
管道运输对远距离输送石油天然气有着较大优势,而与之伴随的管道安全问题使得管道安全检测至关重要.为确保任何时间下管道状况的有效检测,红外成像技术由于其根据对象的热辐射信息反映目标特征的特殊性,能够忽视可见光的影响检测管道状态,因而在管道检测领域有重要意义.但由于户外环境的多样性,交错的管道和复杂环境使得采集的红外管道图像... 相似文献
18.
一种基于图像特征和神经网络的苹果图像分割算法 总被引:7,自引:1,他引:7
苹果识别是开发苹果采摘机器人的关键环节,利用图像处理技术和神经网络分类器探索苹果图像分割算法.从苹果树图片中选取苹果图像样本和背景网像样本.分别计算这两类图像样本的颜色特征和纹理特征.颜色特征的计算基于RGB色彩模型,纹理特征的计算基于灰度共生矩阵.选取适当的颜色特征(R/B值)和纹理特征(对比度值和相关性值)作为输入节点,利用反向传播神经网络分类器建模,输出值是一个O~1之间的计算值.通过阈值将输出结果分类为苹果或背景.试验结果表明,该算法正确率大于87.6%,对光照的影响不敏感,是一利较为实用的苹果分割算法. 相似文献