首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nanosecond laser flash photolysis technique was used to study photochemistry of Fe(III) complex with glioxalic acid. The primary photochemical process was found to be inner-sphere electron transfer in the excited complex leading to formation of the long-lived radical complex [FeII·OOC-C(O)H]2+. A number of important spectral-kinetic parameters of this species were determined and mechanism of photolysis of Fe(III)-glioxalate complex was proposed. 1 The article was translated by the authors.  相似文献   

2.
The formation of MV•+ radical cations was observed upon the laser flash photolysis of the iron(III) tartrate complex [FeIIITart]+ (1) in the presence of methyl viologen (MV2+). The rate constants of the reactions involving MV•+ were measured. The intramolecular electron trans-fer to form FeII and escape of the organic radical to the solvent bulk upon the photolysis of 1 were proposed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 866–869, May, 2007.  相似文献   

3.
Photochemistry of a 1: 1 FeIII-lactic acid complex, [Fe(Lact)]+, in aqueous solutions was studied by stationary photolysis, nanosecond laser flash photolysis (355 nm, 6 ns), and femtosecond pump-probe spectroscopy (400 nm, 200 fs). The quantum yield of photolysis of [Fe(Lact)]+ upon excitation at 355 nm is 0.4 and 0.22 in the deoxygenated and air-saturated solutions, respectively. Weak transient absorption in the range 500–750 nm was observed in the nanosecond experiments. It was assigned to a [FeII...-O-CH(Me)-COO·]+ radical complex. The spectral properties of the ligand-to-metal charge transfer excited state and the characteristic time of formation of the radical complex (1.5 ps) were determined in the femtosecond spectroscopy experiments. A reaction mechanism was proposed, which involves inner-sphere electron transfer in the excited complex with the formation of a radical complex [FeII...-O-CH(Me)-COO·]+ and its subsequent transformation to the end product of the photochemical reaction.  相似文献   

4.
With the use of laser flash photolysis, the formation of hydroxyl radicals upon the photolysis of an iron-rich clay (montmorillonite KSF) was demonstrated. The OH radical was shown to be formed by the photolysis of the Fe(OH)aq 2+ complex that escaped from the clay into the solution bulk.  相似文献   

5.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

6.
利用瞬态吸收光谱技术研究了不同条件下C6H5Cl与H2O2水溶液的激光闪光光解情况, 初步考察了其瞬态物种的生长和衰减等行为. 研究表明, •OH自由基和C6H5Cl反应生成C6H5Cl-OH adduct, 其反应速率常数在近中性、酸性条件下约为(5.89±0.65)×109和(7.07±0.61)×109 L•mol-1•s-1; 其衰减则符合双分子二级反应, 速率常数2k/εl=1.1×106 s-1, 而在碱性时则为(4.34±0.51)×109 L•mol-1•s-1, 衰减呈准一级反应, 速率常数为2.11×105 s-1. 在有氧条件下, O2与C6H5Cl-OH adduct反应生成C6H5Cl-OHO2 adduct, 其反应速率常数为6.8×108 L•mol-1•s-1.  相似文献   

7.
Reactive oxygen species (ROS) are generated dur- ing radiation, respiratory burst, normal metabolic processes and so on. There are enzymatic and non-enzymatic antioxidants such as superoxide dis- mutase (SOD), glutathione peroxidase (GSH-Px), vi- tamin E (VE) and carotenoids that can either inhibit or repair the ROS-induced damage. ROS is essential to maintain physiological homeostasis. However, exces- sive ROS give rise to oxidative damage to proteins, lipids and DNA which related t…  相似文献   

8.
A novel rhenium(I) bipyridyl complex 1a, [(4,4’-di-COOEt-bpy)Re(CO)3(py-NHCO-PTZ)PF6] and a model 1b, [(4,4’-di-COOEt-bpy)Re(CO)3(py-PTZ)PF6] (bpy is 2, 2’-bipyridine, py-NHCO-PTZ is phenothiazine-(10-carbonyl amide) pyridine and py-PTZ is 10-(4-picolyl) phenothiazine) were synthesized. Their photo-induced electron transfer (ET) reaction with electron acceptor methyl viologen (MV2+) in acetonitrile was studied by nanosecond laser flash photolysis at room temperature. Photoexcitation of 1 in the presence of MV2+ led to ET from the Re moiety to MV2+ generating Re(II) and methyl viologen radical (MV·+). Then Re(II) was reduced either by the charge recombination with MV·+ or by intramolecular ET from the attached PTZ, regenerating the photosensitizer Re(I) and forming the PTZ radical at 510 nm. In the case of 1b, the absorption for PTZ radical can be observed distinctly accompanied intermolecular ET, whereas not much difference at 510 nm can be detected for 1a on the time scale of the experiments. This demonstrates that the linking bridge plays a key role on the intramolecular ET in complex 1.  相似文献   

9.
The electronic absorption spectra of radical cations of dipyrroles with a phenylene bridge were studied by laser flash photolysis and quantum chemical methods. Intense absorption bands of the radical cations in the visible region (λmax ≈ 500 nm, εmax > 2 · 104 L mol−1 cm−1) are caused by excitation of electrons from single occupied MOs to the LUMO. In the near IR region, calculations predict additional, relatively intense (f≈ 0.27–0.29) electronic transitions associated with excitation of electrons from low-lying MOs to the single occupied MO.  相似文献   

10.
Degradation processes of N-methylmorpholine-N-oxide monohydrate (NMMO), cellulose and cellulose/NMMO solutions were studied by high performance liquid chromatography (HPLC) and electron spin resonance (ESR) spectroscopy. Kinetics of radical accumulation processes under UV (λ = 248 nm) excimer laser flash photolysis was investigated by ESR at 77 K. Beside radical products of cellulose generated and stabilized at low temperature, radicals in NMMO and cellulose/NMMO solutions were studied for the first time in those systems and attributed to nitroxide type radicals ∼CH2–NO–CH2∼ and/or ∼CH2–NO–CH3∼ at the first and methyl CH3 and formyl CHO radicals at the second step of the photo-induced reaction. Kinetic study of radicals revealed that formation and recombination rates of radical reaction depend on cellulose concentration in cellulose/NMMO solutions and additional ingredients, e.g., Fe(II) and propyl gallate. HPLC measurements showed that the concentrations of ring degradation products, e.g., aminoethanol and acetaldehyde, are determined by the composition of the cellulose/NMMO solution. Results based on HPLC are mainly maintained by ESR that supports the assumption concerning a radical initiated ring-opening of NMMO.  相似文献   

11.
The reaction kinetics of NH2 with propylene is studied by flash photolysis in the temperature range 300-500K. The NH2 radicals are detected by resonance absorption, using a cw single mode dye laser. This method allows the detection of very small radical concentrations in a wide range of experimental conditions. The reaction of NH2 with propylene is fairly slow and seems to correspond to the addition process. The Arrhenius expression obtained is (E in kcal/mole):k(NH2 + C3H6) = 2.9 × 108 exp[-4.3(± 0.2)[RT]M?1s?1.  相似文献   

12.
利用时间分辨激光光解技术研究了季铵盐型离子液体[Me3NC2H4OH]Zn2Cl5(简写R-Zn2Cl5)的光解行为, 研究发现离子液体能被266 nm激光单光子电离, 生成阳离子自由基、[Zn2Cl5]中性自由基和水合电子, 观察到胆碱激发三线态的存在, 并测定了离子液体光电离的量子产额为0.04. 利用266 nm激光对离子液体、胆碱、氯化锌、氯化钠的光解行为比较, 发现胆碱阳离子的贡献很小, [Zn2Cl5]阴离子起主要作用. 采用氧化性自由基SO4•-引发离子自由基, 揭示其光电离机理, 测定离子液体的动力学反应速率常数, SO4•- 460 nm的衰减速率常数为1.3×109 L•mol-1•s-1, 320 nm离子自由基瞬态产物的生成速率常数为1.5×109 L•mol-1•s-1, 两者很接近, 说明SO4•-自由基的衰减与瞬态自由基的生成是同步的.  相似文献   

13.
Optical gain and laser oscillation has been achieved in N2O through selective excitation of the (001) state by vibrational energy transfer from CO2. The CO2 is produced by the flash photolysis initiated chemical reaction: O + CS → CO2 + S.  相似文献   

14.
The kinetics of oxidation of hydroquinone (H2Q) by a μ-oxo-bridged diiron(III,III) complex, Fe2(μ-O)(phen)4(H2O)2]4+ (1) has been investigated in aqueous media at 25.0 °C in presence of an excess of 1,10-phenanthroline (phen). The overall redox rate increases with increase in [H+]. The title complex (1) and its conjugate bases, [Fe2(μ-O)(phen)4(OH)2]3+(2) and [Fe2(μ-O)(phen)4(OH)2]2+ (3), participate in the reaction with H2Q as the only kinetically reactive reducing species. Rate constants (in dm3 mol−1 s−1) for the parallel reactions (1) + H2Q → Products, (2) + H2Q → Products and that for (3) + H2Q → Products are, respectively, 500 ± 40, 100 ± 6 and 30 ± 2. Substantial rate retardation in D2O media in comparison to that in H2O media suggests that electron transfer is coupled with proton movements in the rate-determining step.  相似文献   

15.
The spectral and kinetic properties of the transient species generated in the photolysis of 7,7,9-trimethyl-6,7-dihydrofuro[3,2-f]quinoline (FDHQ) in the absence of oxygen have been studied by lamp and laser flash photolysis. The triplet origin of the short-lived transient species that absorbs in the range of 600–750 nm has been established in experiments with a donor and an acceptor of triplet energy. The rate constants of triplet-triplet annihilation and the interaction of the FDHQ triplet with oxygen (1010 L mol−1 s−1) have been estimated.  相似文献   

16.
Axial coordination of fullerenopyrrolidine bearing the donor imidazolyl group, cis-3-(4-imidazolylphenyl)-1-(pyridin-2-yl)[60]fullereno[1,2-c]pyrrolidine (C60∼Im), with zinc meso-tetraphenylporphyrinate (ZnTPP) in an o-dichlorobenzene solution affords a non-covalently bonded donor-acceptor dyad ZnTPP-C60∼Im. The photochemical behavior of the ZnTPP-C60∼Im complex was studied by fluorescence (excitation at λ = 420 nm) and laser kinetic spectroscopy (excitation at λ = 532 nm, 12 ns). The formation constant of the 1: 1 porphyrin-fullerenopyrrolidine complex determined from quenching of ZnTPP fluorescence assuming static intracomplex quenching is 1.6·104 L mol−1. Absorption spectra of the excited states in the system consisting of ZnTPP and Im∼C60 (ZnTPP/C60∼Im) were measured in solution from 380 to 1000 nm. The quenching constant of the triplet-excited ZnTPP with fullerenopyrrolidine C60∼Im was determined. The results obtained indicate the formation of the triplet exciplex {PL}* ⇌ {Pδ+…Lδ−} in the ZnTPP/C60∼Im system upon laser photolysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1541–1547, September, 2006.  相似文献   

17.
Summary Pulsed laser photolysis coupled with time-resolved UV-absorption monitoring of CH3COradicals was applied to obtain the rate constant, k1, for the reaction CH3CO+ HBr → CH3C(O)H + Br (1); k1(298 K) = (3.59 ± 0.23 (2σ))x10-12cm3molecule-1s-1. Utilization of k1in a third law procedure has provided the standard enthalpy of formation value ofDfH°298(CH3CO) = -10.04 ± 1.10 (2σ) kJ mol-1in excellent agreement with a very recent IUPAC recommendation.  相似文献   

18.
The dissociation of [CuII(L)His]•2+ complexes [L=diethylenetriamine (dien) or 1,4,7-triazacyclononane (9-aneN3)] bears a strong resemblance to the previously reported behavior of [CuII(L)GGH]•2+ complexes. We have used low-energy collision-induced dissociation experiments and density functional theory (DFT) calculations at the B3LYP/6-31+G(d) level to study the macrocyclic effect of the auxiliary ligands on the formation of His•+ from prototypical [CuII(L)His]•2+ systems. DFT revealed that the relative energy barriers of the same electron-transfer (ET) dissociation pathways of [CuII(9-aneN3)His]•2+ and [CuII(dien)His]•2+ are very similar, with the ET reactions of [CuII(9-aneN3)His]•2+ leading to the generation of two distinct His•+ species; in contrast, the proton transfer (PT) dissociation pathways of [CuII(9-aneN3)His]•2+ and [CuII(dien)His]•2+ differ considerably. The PT reactions of [CuII(9-aneN3)His]•2+ are associated with substantially higher barriers (>13 kcal/mol) than those of [CuII(dien)His]•2+. Thus, the sterically encumbered auxiliary 9-aneN3 ligand facilitates ET reactions while moderating PT reactions, allowing the formation of hitherto nonobservable histidine radical cations.  相似文献   

19.
The methods of cyclic voltammetry, electrolysis, and spectrophotometry were used to study electrochemical properties of (TCAS + Fe3+ + dipy), (CCAS + Fe3+ + dipy), and (CCAS + Fe3+ + [Co(dipy)3]3+) triple systems (where TCAS is n-sulfonatothiacalix[4]arene, CCAS is tetracarboxylate n-sulfonatocalix[4]arene, and dipy = α,α′-dipyridyl) in an aqueous solution. One-electron reduction of Fe(III) in the (TCAS + Fe3+ + dipy) system at pH 2.5 results in electroswitching of iron ions from the lower TCAS ring to the upper ([Fe(dipy)3]2+). Reverse electrochemical switching of the system is impossible due to mediator ([Fe(dipy)3]2+/3+) oxidation of TCAS. Reverse electroswitching of Fe(III) ions from unbound to bound state as ([Fe(dipy)3]2+) with CCAS has been revealed in the system (CCAS + Fe3+ + dipy) (pH 1.7) upon single-electron transfer, whereas reversible electroswitching by the upper rim of CCAS from one complex ion ([Co(dipy)3]3+) to another ([Fe(dipy)3]2+) has been demonstrated in the system ([Co(dipy)3]3+ + CCAS + Fe3+ upon double-electron transfer. In all systems, electric switching was accompanied by synchronous color switching.  相似文献   

20.
A laser flash photolysis/resonance fluorescence investigation has been carried out to study the kinetics of the overall reactions OH + cyclopropane (1) and OH + cyclobutane (2) in the temperature range 298–490 K and at 298 K, respectively. The following kinetic parameters have been determined: k1 =(3.9 ±0.6) 10−12exp- (2.2 ± 0.1)kcal mol−1/RT molecule−1cm3s−1, k2(298 K) = (17.5 ± 1.5)10−13molecule−1 cm3s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号