首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many technical applications turbulent flows with embedded slender vortices exist. Depending on the boundary conditions vortex breakdown can occur. The purpose of this work is to develop and implement a solution scheme for large‐eddy simulations of vortex breakdown in turbulent pipe flows. One of the main problems in this simulation is the formulation of the inflow boundary condition for a fully developed turbulent flow with an embedded vortex. For that purpose a rescaling technique is developed in which a solution at a downstream location is inserted at the inflow boundary after an appropriate rescaling. To determine rescaling laws for pipe flows with an embedded vortex, analytical velocity profiles of swirling flows are first prescribed in a laminar flow. From the spatial development of the vortex a scaling law is deduced. In a next step this procedure is to be transferred to turbulent flows.  相似文献   

2.
The linear stability properties of Görtler vortices within a general separated boundary layer flow are addressed. There has been little previous theoretical work directed toward this problem and here we are able to characterize the important features of vortices over the complete wavenumber spectrum. This investigation complements earlier studies of vortices within an attached flow which demonstrated that there are three distinctive wavenumber régimes which together describe the most relevant possibilities for vortex behavior. In the first of these, at relatively small wavenumbers, the mode is inviscid in character; as the vortex wavenumber increases so the spatial amplification rate of the vortices increases until viscous effects become significant and the growth rate begins to diminish. As the wavenumber increases yet further so the vortex is completely stabilized. Here we discuss the corresponding structures which may exist within a separated flow and the most significant result we find is that the maximum growth rate of a mode in this type of flow is actually greater than that which occurs when the flow has not separated. In addition, the inviscid modes are shown to have a far more complicated configuration than within an attached boundary layer and, indeed, their structure can only be completely determined by implementation of numerical procedures.  相似文献   

3.
The nonlinear evolution of long-wavelength non stationary cross-flow vortices in a compressible boundary layer is investigated; the work extends that of Gajjar [1] to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained, and some special cases are discussed. One special case includes linear theory, where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom and Gajjar [2] results for neutral waves to compressible flows. The viscous correction to the growth rate is derived, and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.  相似文献   

4.
5.
It is believed that the flow past a tornado causes the formation of smaller vortices which produce the “suction spots” observed along the path of destruction. Here we develop a greatly simplified mathematical model to investigate this phenomenon. An axially uniform vortex is developed by visualizing a circular tube with uniform surface suction of fluid possessing circulation at infinity. This vortex is then perturbed by a uniform flow past it. An inner asymptotic expansion of an E1/3 radial boundary layer is matched to an outer expansion to obtain a solution. The results show that a stagnation point developing into a secondary vortex is formed in a free shear layer at critical flow conditions. However, it is difficult to apply our results quantitatively because of the difficulty in comparing the axially uniform vortex with a real tornado vortex.  相似文献   

6.
Summary This paper discusses the problem of critical-flow cross-sections in vortex flows. It is shown that there are two different types of vortex flows, A-type and B-type vortices (say). An A-type vortex approaches its critical flow state as its cross-sectional area increases and departs from the critical state as the cross-sectional area is decreased. This property is associated with the particular dependence of total pressure and circulation on the stream function, and it holds for both subcritical and supercritical A-type vortices. On the other hand, both subcritical and supercritical B-type vortices approach their critical flow states as their cross-sectional areas are decreased and depart from their critical states for increasing cross-sectional area. As was shown by Benjamin, setting the first variation of the flow force with respect to the stream function equal to zero leads to Euler's equation of motion. The second variation also vanishes if the corresponding flow state is critical. In this case the sign of the third variation decides whether the flow is an A-type or a B-type vortex. Within the framework of inviscid-fluid flow theory the type of a vortex is preserved unless vortex breakdown occurs. Making use of the knowledge that vortex flows are controlled by two different types of critical-flow cross-sections a variety of vortex flow phenomena are investigated, including the two types of inlet vortices that are observed upstream of jet engines, the behavior of vortex valves, the flow characteristics of liquid-fuel atomizers and the bath tub vortex.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(17-18):4186-4196
A simulation methodology is presented that allows detailed studies of the breakup mechanism of fluid particles in turbulent flows. The simulations, based on large eddy and volume of fluid simulations, agree very well with high-speed measurements of the breakup dynamics with respect to deformation time and length scales, and also the resulting size of the daughter fragments. The simulations reveal the size of the turbulent vortices that contribute to the breakup and how fast the interaction and energy transfer occurs. It is concluded that the axis of the deformed particle and the vortex core axis are aligned perpendicular to each other, and that breakup sometimes occurs due to interaction with two vortices at the same time. Analysis of the energy transfer from the continuous phase turbulence to the fluid particles reveals that the deformed particle attains it maximum in interfacial energy before the breakup is finalized. Similar to transition state theory in chemistry this implies that an activation barrier exists. Consequently, by considering the dynamics of the phenomenon, more energy than required at the final stage needs to be transferred from the turbulent vortices for breakup to occur. This knowledge helps developing new, more physical sound models for the breakup phenomenon required to solve scale separation problems in computational fluid dynamics simulations.  相似文献   

8.
《Applied Mathematical Modelling》2014,38(17-18):4226-4237
Strong nonlinear or very fast phenomena such as mixing, coalescence and breakup in chemical engineering processes, are not correctly described using average turbulence properties. Since these phenomena are modeled by the interaction of fluid particles with single or paired vortices, distribution of the properties of individual turbulent vortices should be studied and understood. In this paper, statistical analysis of turbulent vortices was performed using a novel vortex tracking algorithm. The vortices were identified using the normalized Q-criterion with extended volumes calculated using the Biot–Savart law in order to capture most of the coherent structure related to each vortex. This new and fast algorithm makes it possible to estimate the volume of all resolved vortices. Turbulence was modeled using large-eddy simulation with the dynamic Smagorinsky–Lilly subgrid scale model for different Reynolds numbers. Number density of turbulent vortices were quantified and compared with different models. It is concluded that the calculated number densities for vortices in the inertial subrange and also for the larger scales are in very good agreement with the models proposed by Batchelor and Martinez-Bazán. Moreover, the associated enstrophy within the same size of coherent structures is quantified and its distribution is compared to models for distribution of turbulent kinetic energy. The associated enstrophy within the same size of coherent structures has a wide distribution that is normal distributed in the logarithmic scale.  相似文献   

9.
The paper is devoted to the extension of the near-wall domain decomposition, earlier developed in some previous works by the authors, to modeling flat-plate boundary layers undergoing laminar-to-turbulent bypass transition. The steady-state wall boundary layers at high-intensity free-stream turbulence are studied on the basis of differential turbulence models with the use of non-overlapping domain decomposition. In the approach the near-wall resolution is replaced by the interface boundary conditions of Robin type. In contrast to the previous studies, the main attention is paid to the laminar–turbulent transitional regime. With the use of modified turbulence models we study an effect of free-stream parameters on the development of dynamic processes in the boundary layer including a transitional regime and fully developed turbulent flow. In addition, for the first time a full scale domain decomposition is realized via iterations between the inner and outer subregions until a convergence. The computational profiles of the velocity and intensity of the turbulence kinetic energy are compared with experimental data. A possible range of location of the near-wall interface boundary is found.  相似文献   

10.
A molecular mechanics-type formulation is applied to the cavity problem to generate primary vortices, secondary vortices, and turbulent flow. The fluid considered is water. Turbulence is defined in terms of the absence of a primary vortex and the rapid appearance and disappearance of many small vortices. The mechanism for generating turbulent flow lies in the generation of large repulsive forces between the particles of the model. This results from the increase in particle speeds due to the increase in wall speed.  相似文献   

11.
The non-linear development of finite amplitude Görtlervortices in a non-parallel boundary layer on a curved wall isinvestigated using perturbation methods based on the smallnessof e, the non-dimensional wavelength of the vortices. The crucialstage in the growth or decay of the vortices takes place inan interior viscous layer of thickness O(2) and length O().In this region the downstream velocity component of the perturbationcontains a mean flow correction of the same order of magnitudeas the fundamental which is driving it. Moreover, these functionssatisfy a pair of coupled non-linear partial differential equationswhich must be solved subject to some initial conditions imposedat a given downstream location. It is found that, dependingon whether the boundary layer is more or less unstable downstreamof this location, the initial disturbance either grows intoa finite amplitude Görtler vortex or decays to zero. Forthe Blasius boundary layer on a concave wall it is found thatGörtler vortices can only develop if the rate of increaseof curvature of the wall is sufficiently large. In this casethe finite amplitude solution which develops initially in an-neighbourhood of the position where the disturbance is introducedchanges its structure further downstream. This structure isinvestigated at a distance O() (with 0< <1) downstreamof the above -neighbourhood. In this régime the downstreamfundamental velocity component has an elliptical profile overmost of the flow field. However, in two thin boundary layerslocated symmetrically either side of the centre of the viscouslayer the fundamental velocity component decays exponentiallyto zero. The locations of these layers are determined by aneigenvalue problem associated with the one-dimensional diffusionequation. The mean flow correction persists both sides of theboundary layer and ultimately decays exponentially to zero. This large amplitude motion is not sensitive to the imposedinitial conditions and appears to be the ultimate state of anyinitial disturbance. However, in the initial stages of the growthof the vortex, some surprising flows are possible. For example,it is possible to set up a vortex flow similar to that observedby Wortmann (1969) which consists of a sequence of cells inclinedat an angle to the vertical.  相似文献   

12.
转捩边界层中次生流向涡演化的数值研究   总被引:1,自引:0,他引:1  
采用高精度直接数值模拟方法和高效的特征无反射边界条件,进行可压缩流转捩边界层中出现的次生流向涡演化的数值研究.精细的数值模拟结果清楚地揭示了转捩边界层的复杂流场中次生流向涡的形成和演化过程,探讨它对转捩至关重要的环状涡生成的影响,发现次生流向涡和主流向涡的共同作用形成环状涡的一种新机理.  相似文献   

13.
The plasma actuator is used to generate periodical train of vortices moving along the surface. For generation the high-frequency high-voltage AC is used forming more-or-less steady wall-jet-like flow by the dielectric barrier discharge or corona discharge. Low-frequency modulation of the supply voltage is applied to generate vortices. Parameters of the vortex train are studied as function of the generator setting using TR-PIV technique. The generated flow patterns are to be applied for control of a boundary layer. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Summary A free-streamline flow model for flow past a polygonal obstacle with a near-wake terminating in Tulin's double spiral vortices is constructed. The flows are univalent for a large class of geometries. In addition a criterion is given for determining the underpressure as function of the Reynolds number using the Stokes solution for diffusion of a vortex sheet, and an extension of Tulin and Hsu's matching theory to transitional flows.
Sunto Si costruisce un modello di flusso con scia e vortici a doppia spirale alla Tulin per un ostacolo poligonale arbitrario. Il flusso risulta univalente per un' ampia classe di geometrie. Inoltre viene proposto un criterio per correlare il parametro del modello al numero di Reynolds del corrispondente flusso viscoso, combinando la soluzione di Stokes per la diffusione di uno strato di vortici con la teoria di Tulin e Hsu (1980).
  相似文献   

15.
This paper presents the application of coherent vortex simulation (CVS) filtering, based on an orthogonal wavelet decomposition of vorticity, to study mixing in 2D homogeneous isotropic turbulent flows. The Eulerian and Lagrangian dynamics of the flow are studied by comparing the evolution of a passive scalar and of particles advected by the coherent and incoherent velocity fields, respectively. The former is responsible for strong mixing and produces the same anomalous diffusion as the total flow, due to transport by the coherent vortices, while mixing in the latter is much weaker and corresponds to classical diffusion.  相似文献   

16.
Stefan Braun  Stefan Scheichl 《PAMM》2016,16(1):569-570
The method of matched asymptotic expansions is used to investigate marginally separated boundary layer flows (laminar or alternatively transitional separation bubbles) at high Reynolds numbers. Typical examples include, among others, the flow past slender airfoils at small to moderate angels of attack and channel flows with suction. As is well-known, classical (hierarchical) boundary layer computations usually break down under the action of an adverse pressure gradient on the flow, a scenario associated with the appearance of the Goldstein separation singularity. If, however, the parameter controlling the strength of the pressure gradient (the angle of attack or the relative suction rate in the examples mentioned above) is adjusted accordingly, the application of a local viscous-inviscid interaction strategy is capable of describing localized boundary layer separation. Moreover, taking into account unsteady effects and flow control devices allows the investigation of the conditions leading to forced or self-sustained vortex generation and the subsequent evolution process culminating in bubble bursting. Within the asymptotic formulation of this stage bubble bursting is associated with the formation of finite time singularities in the solution of the underlying equations and a corresponding break down. The distinct blow-up structure gives rise to a fully non-linear triple deck interaction stage featuring shorter spatio-temporal scales characteristic of the successive vortex evolution process. The paper will focus on the numerical treatment of the initial phase of the latter stage. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Dissipation of enstrophy in 2D incompressible flows in the zero viscous limit is considered to play a significant role in the emergence of the inertial range corresponding to the forward enstrophy cascade in the energy spectrum of 2D turbulent flows. However, since smooth solutions of the 2D incompressible Euler equations conserve the enstrophy, we need to consider non-smooth inviscid and incompressible flows so that the enstrophy dissipates. Moreover, it is physically uncertain what kind of a flow evolution gives rise to such an anomalous enstrophy dissipation. In this paper, in order to acquire an insight about the singular phenomenon mathematically as well as physically, we consider a dispersive regularization of the 2D Euler equations, known as the Euler-\(\alpha \) equations, for the initial vorticity distributions whose support consists of three points, i.e., three \(\alpha \)-point vortices, and take the \(\alpha \rightarrow 0\) limit of its global solutions. We prove with mathematical rigor that, under a certain condition on their vortex strengths, the limit solution becomes a self-similar evolution collapsing to a point followed by the expansion from the collapse point to infinity for a wide range of initial configurations of point vortices. We also find that the enstrophy always dissipates in the sense of distributions at the collapse time. This indicates that the triple collapse is a mechanism for the anomalous enstrophy dissipation in non-smooth inviscid and incompressible flows. Furthermore, it is an interesting example elucidating the emergence of the irreversibility of time in a Hamiltonian dynamical system.  相似文献   

18.
Knowledge of particle deposition in turbulent flows is often required in engineering situations. Examples include fouling of turbine blades, plate-out in nuclear reactors and soot deposition. Thus it is important for numerical simulations to be able to predict particle deposition. Particle deposition is often principally determined by the forces acting on the particles in the boundary layer. The particle tracking facility in the CFD code uses the eddy lifetime model to simulate turbulent particle dispersion, no specific boundary layer being modelled. The particle tracking code has been modified to include a boundary layer. The non-dimensional yplus, y+, distance of the particle from the wall is determined and then values for the fluid velocity, fluctuating fluid velocity and eddy lifetime appropriate for a turbulent boundary layer used. Predictions including the boundary layer have been compared against experimental data for particle deposition in turbulent pipe flow. The results giving much better agreement. Many engineering problems also involve heat transfer and hence temperature gradients. Thermophoresis is a phenomena by which small particles experience a force in the opposite direction to the temperature gradient. Thus particles will tend to deposit on cold walls and be repulsed by hot walls. The effect of thermophoresis on the deposition of particles can be significant. The modifications of the particle tracking facility have been extended to include the effect of thermophoresis. A preliminary test case involving the deposition of particles in a heated pipe has been simulated. Comparison with experimental data from an extensive experimental programme undertaken at ISPRA, known as STORM (Simplified Tests on Resuspension Mechanisms), has been made.  相似文献   

19.
The two‐phase flow of a flocculated suspension in a closed settling vessel with inclined walls is investigated within a consistent extension of the kinematic wave theory to sedimentation processes with compression. Wall boundary conditions are used to spatially derive one‐dimensional field equations for planar flows and flows which are symmetric with respect to the vertical axis. We analyse the special cases of a conical vessel and a roof‐shaped vessel. The case of a small initial time and a large time for the final consolidation state leads to explicit expressions for the flow fields, which constitute an important test of the theory. The resulting initial‐boundary value problems are well posed and can be solved numerically by a simple adaptation of one of the newly developed numerical schemes for strongly degenerate convection‐diffusion problems. However, from a physical point of view, both the analytical and numerical results reveal a deficiency of the general field equations. In particular, the strongly reduced form of the linear momentum balance turns out to be an oversimplification. Included in our discussion as a special case are the Kynch theory and the well‐known analyses of sedimentation in vessels with inclined walls within the framework of kinematic waves, which exhibit the same shortcomings. In order to formulate consistent boundary conditions for both phases in a closed vessel and in order to predict boundary layers in the presence of inclined walls, viscosity terms should be taken into account. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号