首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Periodic trends in metal–metal interactions in edge-shared [M2Cl10]4− systems, involving the transition metals from groups 4 through 8 and electronic configurations ranging from d1d1 through d5d5, have been investigated by calculating metal–metal bonding and spin-polarization (exchange) effects using density functional theory. The trends found in this study are compared with those for the analogous face-shared [M2Cl9]3− systems reported in earlier work. Strong linear correlations between the metal–metal bonding and spin-polarization terms have been obtained for all groups considered. In general, spin polarization and electron localization are predominant in 3d–3d species whereas electron delocalization and metal–metal bonding are favoured in 5d–5d species, with more variable results observed for 4d–4d systems. As previously found for face-shared [M2Cl9]3− systems, the strong correlations between the metal–metal bonding and spin polarization energy terms can be related to the fact that both properties appear to be similarly affected by the changes in the metal orbital properties and electron density occurring within the dndn groups. A significant difference between the face-shared and edge-shared systems is that while the 4d metals in the former show a strong tendency for delocalized metal–metal bonded structures, the edge-shared counterparts display much greater variation with both metal–metal bonded and weakly coupled complexes observed. The tendency for weaker metal–metal interactions can be traced to the inability of the edge-shared bridging structure to accommodate the smaller metal–metal distances required for strong metal–metal bonding.  相似文献   

2.
The first ternary compound in the Nb–Ni–Sb system, Nb28Ni33.5Sb12.5, has been synthesized and its structure has been determined by single-crystal X-ray diffraction methods. Nb28Ni33.5(2)Sb12.5(2) adopts the X-phase structure type (orthorhombic, space group Pnnm, Z=1, a=13.2334(5) Å, b=16.5065(7) Å, c=5.0337(2) Å), which belongs to the set of tetrahedrally close-packed (TCP) structures adopted by many intermetallic compounds. Typical of such TCP structures, the atoms reside in sites of high coordination number, with Ni and Sb in CN12 and Nb in CN14, -15, and -16 sites. The relative importance of various metal–metal bonding interactions is discussed on the basis of extended Hückel band structure calculations. Nb28Ni33.5Sb12.5 displays metallic behavior with a room-temperature resistivity of 2.3×10−4 Ω cm.  相似文献   

3.
Tight-binding calculations with an extended Hückel Hamiltonian were performed on Ba2/3Pt3B2 and LuOs3B2. Hypothetical linear metal boride chains present in these materials are analyzed with a three-dimensional model that contains a trigonal bipyramidal T3B2 (T = transition metal) building unit for the compounds. The geometrical structure for the T3B2 trigonal bipyramids depends on the number of electrons. For systems that have greater than 36 electrons in its trigonal bipyramidal building unit, a structural distortion is expected. Electron back donation from the electron-rich M3 fragment to the empty e′ set on B2 creates boron–boron interaction along the z-axis. Boron–boron pairing then participates as an electron sink and causes a trigonal distortion of the platinum Kagome net. On the other hand, a system with <35 electrons should have an undistorted, CeCo3B2 type structure. The electronic factors that create the breathing motion are discussed and analyzed with the aid of molecular and solid-state models. The metal–metal bonding associated with the structural properties also has been examined.  相似文献   

4.
A nickel diphosphate with mixed cations, Na(NH4)[Ni3(P2O7)2(H2O)2] with a layered structure has been synthesized under hydrothermal conditions for the first time and characterized by single crystal X-ray diffraction, IR spectroscope and magnetization measurements. The structure consists of cis- and trans-edge sharing NiO6 octahedral chains linked via P2O7 units to [Ni3P4O16]2− layers. The ammonium and sodium cations are alternately located in the interlayer spaces. The mixed cations play an important role in the structural formation of this layered compound, leading to a new layer-stacking variant. The magnetic susceptibility obeys a Curie–Weiss law with μeff of 3.32 μB, showing the Ni2+ character and weak antiferromagnetic interactions.  相似文献   

5.
Lanthanoide nitridoborates of the general formula Ln3(B2N4) with Ln=La, Ce, Pr, and Nd occur as black crystalline materials. Their structures contain oxalate-like [B2N4]8− ions being stacked in an eclipsed formation along one crystallographic direction. Electronic structures were calculated for a molecular [B2N4]8−, for the [B2N4] partial structure, and for the complete La3(B2N4) structure with the extended Hückel algorithm to analyze the bonding characteristics and to trace the necessity and properties of one surplus electron of (La3+)3(B2N48−)(e). The HOMO of a [B2N4]8− is B-B σ bonding, and the LUMO is B-B π bonding but B-N antibonding. The energy band of the solid state [B2N4] partial structure corresponding to the LUMO is broadened as a result of intermolecular B?B interactions between adjacent [B2N4] units along the stacking direction. Due to bonding interactions with La d orbitals, this band is significantly lowered in energy and occupied with one electron in the band structure of La3(B2N4). This singly occupied band exhibits no band crossings but creates a semimetal-like band structure situation.  相似文献   

6.
Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal–metal and metal–chalcogenide interactions. Herein, we present Ir6In32S21, a novel semiconducting subchalcogenide compound that crystallizes in a new structure type in the polar P31m space group, with unit cell parameters a = 13.9378(12) Å, c = 8.2316(8) Å, α = β = 90°, γ = 120°. The compound has a large band gap of 1.48(2) eV, and photoemission and Kelvin probe measurements corroborate this semiconducting behavior with a valence band maximum (VBM) of −4.95(5) eV, conduction band minimum of −3.47(5) eV, and a photoresponse shift of the Fermi level by ∼0.2 eV in the presence of white light. X-ray absorption spectroscopy shows absorption edges for In and Ir do not indicate clear oxidation states, suggesting that the numerous coordination environments of Ir6In32S21 make such assignments ambiguous. Electronic structure calculations confirm the semiconducting character with a nearly direct band gap, and electron localization function (ELF) analysis suggests that the origin of the gap is the result of electron transfer from the In atoms to the S 3p and Ir 5d orbitals. DFT calculations indicate that the average hole effective masses near the VBM (1.19me) are substantially smaller than the average electron masses near the CBM (2.51me), an unusual feature for most semiconductors. The crystal and electronic structure of Ir6In32S21, along with spectroscopic data, suggest that it is neither a true intermetallic nor a classical semiconductor, but somewhere in between those two extremes.

Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal–metal and metal–chalcogenide interactions.  相似文献   

7.
Na+ complex with the dibenzo-18-crown-6 ester was used as a template to synthesize mesoporous titanium dioxide with the specific surface area 130–140 m2/g, pore diameter 5–9 nm and anatase content 70–90%. The mesoporous TiO2 samples prepared were found to have photocatalytic activity in CuII, NiII and AgI reduction by aliphatic alcohols. The resulting metal–semiconductor nanostructures have remarkable photocatalytic activity in hydrogen evolution from water–alcohol mixtures, their efficiency being 50–60% greater than that of the metal-containing nano-composites based on TiO2 Degussa P25.The effects of the thermal treatment of mesoporous TiO2 upon its photocatalytic activity in hydrogen production were studied. The anatase content and pore size were found to be the basic parameters determining the photoreaction rate. The growth of the quantum yield of hydrogen evolution from TiO2/Ag0 to TiO2/Ni0 to TiO2/Cu0 was interpreted in terms of differences in the electronic interaction between metal nanoparticles and the semiconductor surface. It was found that there is an optimal metal concentration range where the quantum yield of hydrogen production is maximal. A decrease in the photoreaction rate at further increment in the metal content was supposed to be connected with the enlargement of metal nanoparticles and deterioration of the intimate electron interaction between the components of the metal–semiconductor nanocomposites.  相似文献   

8.
The reaction of hexafluoro-cyclo-triphosphazene P3N3F6 with ammonia in acetonitrile has been studied. New compounds, (2-imino-2,4,4,6,6-pentafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-trienyl)-2-amino-4,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F5–NH–P3N3F4NH2 (2) and cis and trans isomers of non-gem-2,4-diamino-2,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F4(NH2)2 (4, 5), were detected by GC/MS, and 31P NMR spectroscopy in reaction mixtures. X-ray diffraction analysis of P3N3F5–NH–P3N3F4NH2 (2) revealed two conformational polymorphs, 2A and 2B, the latter being built up of two different conformers that were further denoted as 2Ba (the same as the single conformer in 2A) and 2Bb. The compound 2 was characterized by spectroscopic methods and its 2D potential energy surface (PES) was described by density functional theory computations depending on two dihedral angles. The calculated PES spans over 30 kJ/mol in energy including 8 local minima and all first and second order saddle points. The occurrence of the two experimentally observed conformers 2Ba and 2Bb seems to be governed by crystal packing effects.  相似文献   

9.
The crystal structure of α-UB2C (low temperature modification below T = 1675(25)°C) was determined from powder X-ray data (RT) and powder neutron diffraction data (at 29 K) employing the Rietveld-Young-Wiles profile analysis method. α-UB2C crystallizes in the orthorhombic space group Pmma with a = 0.60338(3), B = 0.35177(2), C = 0.41067(2) nm, V = 0.0872 nm3, Z = 2. The residuals of the neutron refinement were R1 = 0.032 and RF = 0.043. The crystal structure of α-UB2C is a new structure type where planar nonregular 63-U-metal layers alternate with planar nonmetal layers of the type (B6C2)3. Boron atoms are in a typical triangular prismatic metal surrounding with a tetrakaidekahedral coordination B[U6B2C1], whereas carbon atoms occupy the center points of rectangular bipyramids C[U4B2]. The crystal structure of α-UB2C derives from the high temperature modification β-UB2C (ThB2C-type, ), which reveals a similar stacking of slightly puckered metal layers 63, alternating with planar layers B6 · (B6C3)2. The phase transition from β-UB2C to α-UB2C is thus essentially generated by carbon diffusion within the B6 · (B6C3)2 layers to form (B6C2)3 layers.  相似文献   

10.
Rearrangement of local order near the Fe atoms was analyzed by the EXAFS spectroscopy during thermal transformation of polymerizing [Fe3O(OOCCH=CHCOOH)6]OH · 3H2O. The following processes were disclosed to be involved in the thermolysis: dehydration with simultaneous rearrangement of the ligand environment, partial removal of maleic acid molecules, and thermal polymerization of the rearranged monomer with the conserved coordination of a trinuclear Fe3O fragment with maleic ligands. The metal carboxylate [Fe3OR6] cluster decomposes without the metal–metal bonding at the initial stage of decarboxylation followed by the formation of Fe–O-containing phases. This process can be considered as the nucleation of nanoparticles in the metal–polymer system.  相似文献   

11.
In novel superatom chemistry, it is very attractive that all‐metal clusters can mimic the behaviors of nonmetal atoms and simple nonmetal molecules. Wizardly all‐metal halogen‐like superatom Al13 with 2P5 sub shell (corresponding to the 3p5 of chlorine) is the most typical example. In contrast, how to mimic the behaviors of magnetic transition‐metal atom using all‐nonmetal cluster is an intriguing challenge for superatom chemistry. In response to this based on human intuition, using quantum chemistry methods and extending jellium model from metal cluster to all‐nonmetal cluster, we have found out that all‐nonmetal octahedral B6 cluster with characteristic jellium electron configuration 1S21P62S21D8 in the triplet ground state can mimic the behaviors of transition‐metal Ni atom with electron configuration 3s23p64s23d8 in electronic configuration, physics and chemistry. Interestingly, the characteristic order of 1S1P2S1D for the B6 nonmetal cluster with short B‐B lengths is different from that of the traditional jellium model—1S1P1D2S for metal clusters with long M‐M lengths, which exhibits a novel size effect of nonmetal cluster on jellium orbital ordering. Based on the jellium electron configuration, the B6 with the spin moment value of 2μB is a new all‐nonmetal transition‐metal nickel‐like superatom exhibiting a new kind of all‐nonmetal magnetic superatom. Finding the application of the all‐nonmetal magnetic superatom, we encapsulate the magnetic superatom B6 inside fully hydrogenated fullerene forming a clathrate B6@C60H60 with the spin moment value of 2μB. As the C60H60 cage as a polymerization unit can conserve the spin moment of endohedral B6, the clathrate B6@C60H60 is a new all‐nonmetal magnetic superatom building block. Naturally, magnetic superatom structures of the B6 and B6@C60H60 may be metastable.  相似文献   

12.
A multivariate curve resolution method by alternating least-squares (MCR-ALS) is applied to differential pulse voltammograms measured on the Cd(II)+(γ-Glu---Cys)2Gly system as a model of metal–phytochelatin interactions at concentrations of both components in the range 10−7–10−5 mol l−1. The course of complexation is different when peptide is titrated with metal from that when metal is titrated with peptide. The combined analysis of both matrices from titrations of peptide with metal and of metal with peptide allowed the resolution of the system. The analysis of the resulting pure voltammograms and concentration profiles of the resolved components suggested the presence of four different types of bound Cd(II) and made possible the formulation of a complexation model.  相似文献   

13.
As part of an extensive effort to synthesize a variety of nanosized gold–palladium carbonyl phosphine clusters, the neutral Au4Pd32(CO)28(PMe3)14 (1) was isolated and unambiguously characterized by low-temperature CCD X-ray diffraction and IR measurements. This nanosized Au4Pd32 cluster was prepared in low yields (<5%) from the room-temperature reaction of Pd10(CO)12(PMe3)6 (2) with Au(SMe2)Cl in THF/acetone. The heretofore unknown molecular geometry of 1 of pseudo-D2 (222) symmetry (without methyl substituents) may be viewed to arise from a relatively strong (Au–Au)-bonded linkage (2.64 Å (av)) of two pentagonal-bipyramidal (μ5-Au)(μ5-Pd)Pd5 polyhedra; this generated 14-atom Au2Pd12 unit may be considered as a markedly deformed part of a 19-atom Au-centered double icosahedron without the inner pentagon (corresponding to five missing inner atoms). In turn, two Au2Pd12 units form a central composite-twinned Au4Pd22 kernel via vertex-fusion of two common Pd atoms along with additional formation of four Pd–Pd bonding, four Au–Pd bonding, and two weaker secondary Au–Au bonding interactions at 2.90 Å (av) (versus the other two diagonal Au–Au nonbonding ones at 3.51 Å (av)); this resulting Au4Pd22P8 kernel is augmented by the addition of two triangular Pd3P core-fragments and four exopolyhedral PdP groups to give the Au4Pd32P14 framework of 1. This cluster is stabilized by 28 bridging COs, of which 20 are doubly bridging and 8 triply bridging. The largest metal-core diameter of 1 along one pseudo C2 axis is 1.1 nm. This new type of multi-twinned metal cluster has direct relevance to both ligated and non-ligated (naked) non-crystalline metal nanoparticles, many of which possess multiple twinning and/or disorder.*Dedicated to Professor F. A. Cotton on the occasion of his 75th birthday in recognition of numerous seminal contributions to modern Inorganic Chemistry. Professor Cotton has a truly unparalleled scientific career in Inorganic Chemistry in terms of the overall composite effects of his highly prolific research productivity, his tremendous impact on former graduate students, postdoctoral associates, and collaborators, and his matchless textbooks/monographs.  相似文献   

14.
The first fully characterized phase in the Nb‐Ru‐B system, Nb3Ru5B2, was successfully synthesized as polycrystalline powders as well as single crystals and characterized by EDX analysis and X‐ray diffraction methods. It is the first ternary phase of the type A3T5B2 adopting the Ti3Co5B2 structure type and containing a group eight transition metal at the T sites. According to COHP bonding analysis the Nb–Nb interactions between two pentagonal prisms are strongly bonding and thus weaken the Nb–Ru interactions, which become significantly weaker than those found in the tetragonal prisms. Furthermore a deep pseudogap is found around the Fermi Level of the calculated DOS and the phase is predicted to be a metallic conductor as expected for this metal‐rich boride.  相似文献   

15.
The new layered material, TaFe1+xTe3 (0.25 < x < 0.29), has been synthesized by reaction of the constituent elements. Single-crystal X-ray diffraction studies show that at x = 0.25 the compound crystallizes in the space group P21/m (no. 11) (a = 7.436(1), B = 3.638(1), C = 10.008(1) Å, β = 109.17(1)°). The structure features an unusual Ta---Fe bonded network that contains an equal number of Ta and Fe atoms. The metal network lies between tellurium layers, forming a FeTaTe3 “sandwich.” Additionally, x Fe atoms per formula unit partially occupy a square pyramidal site that provides interlayer bonding through the apical tellurium, which is in an adjacent “sandwich.” Selected area electron diffraction studies did not reveal any order in the partially occupied Fe positions. Electrical and magnetic measurements reveal that, at x = 0.25, the compound is an antiferromagnetic metal (TN = 200 K) and undergoes a structural phase transition at 1010 K.  相似文献   

16.
Carbonyl–iridium half-sandwich compounds, Cp*Ir(CO)(EPh)2 (E=S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)2 with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(μ-EPh)2[Cr(CO)4], Cp*Ir(CO)(μ-EPh)2[Mo(CO)4] and Cp*Ir(CO)(μ-EPh)2[Fe(CO)3], respectively. A trimethylphosphane–iridium analogue, Cp*Ir(PMe3)(μ-SeMe)2[Cr(CO)4], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4] has been determined by a single crystal X-ray structure analysis. According to the long Ir…Mo distance (395.3(1) Å), direct metal–metal interactions appear to be absent.  相似文献   

17.
Studies on the magnetic properties of the molecular antiferromagnetic material {N(n-C5H11)4[MnIIFeIII(ox)3]}, carried out by various physical techniques (AC/DC magnetic susceptibility, magnetization, heat capacity measurements and Mössbauer spectroscopy) at low temperatures, have been presented. Different experimental observations complement each other and provide a clue for the observation of an uncompensated magnetization below the Néel temperature and short-range correlations persisting high above TN. It is understood that the honeycomb layered structure of the compound contains non-equivalent magnetic sub-lattices, (MnII–ox–FeIIIA–...) and (MnII–ox–FeIIIB–...), where different responses of the FeIIIA and FeIIIB spin sites towards an external magnetic field might be responsible for the observation of the uncompensated magnetization in this compound at T < TN. The present magnetic system is an S = 5/2 2-D Heisenberg antiferromagnet system with the intralayer exchange parameter J/kB = −3.29 K. A very weak interlayer exchange interaction was anticipated from the spin wave modeling of the magnetic heat capacity for T < 0.5TN. The positive sign of the coupling between the layers has been concluded from the Mössbauer spectrum in the applied magnetic field. Frustration in the magnetic interactions gives rise to the uncompensated magnetic moment in this compound at low temperatures.  相似文献   

18.
The ultraviolet photoelectron spectra of mono and binuclear cyclooctatetraene (COT) complexes (CO)3FeCOT (I) [(CO)3Fe]2COT (II), CpCrCOT (Cp: 1,3 cyclopentadienyl) (III) and (CpCr)2COT (IV) are reported. The interpretation of the low energy part of the spectra is followed by a discussion concerning the metal–ligand (COT) and metal–metal interactions. The calculated gas phase structure of CpCrCOT is presented and its main features are discussed.  相似文献   

19.
The rotational constant B and the l-type doubling constant q were determined for the v5, v3+v6 and v2, states of CH2I from the microwave transition frequencies, in combination with the infrared data previously reported. Since these vibrational states were coupled through the Fermi resonance and the xy-type E-E and A1-E Coriolis resonances, the analysis was made by setting up and solving the complete form of the secular determinants of the energy matrices. The rotational and l-type doubling constants were determined as B5, = 0.250 173 cm?1, B36 = 0.247 600 cm?1, B2 = 0.249 369 cm?1, q5 = ?0.000 027 cm?1 and q36 = ?0.000 179 cm?1, which are unperturbed by Fermi and Coriolis interactions. Other band constants for v5 and v3+v6 were also refined in accordance with the new values of B5 and B36. The present study indicated that the combined analysis of microwave and infrared spectral data was useful for the precise determination of vibration-rotation, levels in the perturbed system.  相似文献   

20.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号