首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chaos in a pendulum with feedback control   总被引:4,自引:0,他引:4  
We study chaotic dynamics of a pendulum subjected to linear feedback control with periodic desired motions. The pendulum is assumed to be driven by a servo-motor with small inductance, so that the feedback control system reduces to a periodic perturbation of a planar Hamiltonian system. This Hamiltonian system can possess multiple saddle points with non-transverse homoclinic and/or heteroclinic orbits. Using Melnikov's method, we obtain criteria for the existence of chaos in the pendulum motion. The computation of the Melnikov functions is performed by a numerical method. Several numerical examples are given and the theoretical predictions are compared with numerical simulation results for the behavior of invariant manifolds.  相似文献   

2.
有界噪声激励下单摆-谐振子系统的混沌运动   总被引:1,自引:0,他引:1  
研究了具有同宿轨道和周期轨道的可积单摆-谐振子系统在弱Hamilton摄动(即弱耦合摄动)和弱非Hamilton摄动(即阻尼和有界噪声微扰)下的混沌运动.用Melnikov方程预测Hamilton系统中可能存在混沌运动的参数域,并用Poincare截面验证解析结果.用数值方法计算了有阻尼与有界噪声激励下系统的最大Lyapun0V指数和Poincare截面,结果表明有界噪声在频率上的扩散减小了引发系统产生混沌运动的效应。  相似文献   

3.
The weakly nonlinear resonant response of an orthogonal double pendulum to planar harmonic motions of the point of suspension is investigated. The two pendulums in the double pendulum are confined to two orthogonal planes. For nearly equal length of the two pendulums, the system exhibits 1:1 internal resonance. The method of averaging is used to derive a set of four first order autonomous differential equations in the amplitude and phase variables. Constant solutions of the amplitude and phase equations are studied as a function of physical parameters of interest using the local bifurcation theory. It is shown that, for excitation restricted in either plane, there may be as many as six pitchfork bifurcation points at which the nonplanar solutions bifurcate from the planar solutions. These nonplanar motions can become unstable by a saddle-node or a Hopf bifurcation, giving rise to a new branch of constant solutions or limit cycle solutions, respectively. The dynamics of the amplitude equations in parameter regions of the Hopf bifurcations is then explored using direct numerical integration. The results indicate a complicated amplitude dynamics including multiple limit cycle solutions, period-doubling route to chaos, and sudden disappearance of chaotic attractors.  相似文献   

4.
We consider a pendulum subjected to linear feedback control with periodic desired motions. The pendulum is assumed to be driven by a servo-motor with small time constant, so that the feedback control system can be approximated by a periodically forced oscillator. It was previously shown by Melnikov's method that transverse homoclinic and heteroclinic orbits exist and chaos may occur in certain parameter regions. Here we study local bifurcations of harmonics and subharmonics using the second-order averaging method and Melnikov's method. The Melnikov analysis was performed by numerically computing the Melnikov functions. Numerical simulations and experimental measurements are also given and are compared with the previous and present theoretical predictions. Sustained chaotic motions which result from homoclinic and heteroclinic tangles for not only single but also multiple hyperbolic periodic orbits are observed. Fairly good agreement is found between numerical simulation and experimental results.  相似文献   

5.
Zou  Hai-Lin  Deng  Zi-Chen  Zhou  Hongyuan 《Nonlinear dynamics》2022,110(1):55-67

Dielectric elastomer is a type of soft materials which can deform under applied voltage. Here, irregular vibrations in a circular dielectric elastomer membrane with stiffening under periodic forcing are studied. The stiffening phenomenon can induce fast increases in the potential energies near the limiting stretches, which induces challenges to the numerical simulations. By comparing different numerical strategies, the adaptive step size method with allowable very small step sizes is used to simulate the system. For the system with or without damping, the existence of chaos is then verified through the positive maximum Lyapunov exponent and the fractal structures in the phase plane simultaneously. The local dynamic analysis shows the strong contribution of regions near the limiting stretches to the occurrence of chaos, revealing the important role of the stiffening. For the system with damping, the rich dynamical behaviors accompanying chaos such as the period-doubling route to chaos and the long chaotic transients also provide further consistent supports for the existence of chaos. For the system without damping, chaos region in a parameter plane is located by using different initial conditions, revealing the transitional behaviors from periodic states to chaos. Besides, the chaos is more easily to occur in the system without damping. Thus, the study here is useful to avoid or further handle such complex irregular dynamics.

  相似文献   

6.
Determination of the chaos onset in some mechanical systems with several equilibrium positions are analyzed. Namely, the snap-through truss and the oscillator with a nonlinear dissipation force, under the external periodical excitation, are considered. Two approaches are used for the chaos onset determination. First, Padé and quasi-Padé approximants are used to construct closed homoclinic trajectories for a case of small dissipation. Convergence condition used earlier in the theory of nonlinear normal vibration modes as well conditions at infinity make possible to evaluate initial amplitude values for the trajectories with admissible precision. Mutual instability of phase trajectories is used as criterion of chaotic behavior in nonlinear systems for a case of not small dissipation. The numerical realization of the Lyapunov stability definition gives us a possibility to observe a process of appearance and fast enlargement of the chaotic behavior regions if some selected parameters of the dynamical systems under consideration are changing.  相似文献   

7.

Conventional neural networks are universal function approximators, but they may need impractically many training data to approximate nonlinear dynamics. Recently introduced Hamiltonian neural networks can efficiently learn and forecast dynamical systems that conserve energy, but they require special inputs called canonical coordinates, which may be hard to infer from data. Here, we prepend a conventional neural network to a Hamiltonian neural network and show that the combination accurately forecasts Hamiltonian dynamics from generalised noncanonical coordinates. Examples include a predator–prey competition model where the canonical coordinates are nonlinear functions of the predator and prey populations, an elastic pendulum characterised by nontrivial coupling of radial and angular motion, a double pendulum each of whose canonical momenta are intricate nonlinear combinations of angular positions and velocities, and real-world video of a compound pendulum clock.

  相似文献   

8.
非自旋航天器混沌姿态运动及其参数开闭环控制   总被引:12,自引:0,他引:12  
陈立群  刘延柱 《力学学报》1998,30(3):363-369
研究万有引力场中受大气阻力且存在结构内阻尼的非自旋航天器在椭圆轨道上平面天平动的混沌及其参数开闭环控制问题.在建立数学模型的基础上确定出现混沌的必要条件并数值验证混沌的存在性,提出非线性振动系统混沌运动的参数开闭环控制并应用于控制航天器的混沌姿态运动.  相似文献   

9.
It is proved that conditionally periodical and chaotic trajectories of a double mathematical pendulum exist when the ratio of the pendulum masses is not small  相似文献   

10.
万有引力场中陀螺体的混沌运动   总被引:1,自引:0,他引:1  
成功  刘延柱  彭建华 《力学学报》2000,32(3):379-384
研究万有引力场中沿圆轨道运行的非对称陀螺体的姿态运动,引入Deprit正则变量建立系统的Hamilton结构,利用Melnikov方法证明在万有引力短作用的昆体产生混沌运动的可能性。对Poincare截面的数值计算表明提高陀螺体的转子转速可对混沌起抑制作用。  相似文献   

11.
An investigation of the dynamic behavior of a driven Froude pendulum is carried out. Numerical solutions of a highly non-linear Froude pendulum are developed by making use of the piecewise-constant procedure. Periodic, quasiperiodic and chaotic motions of the pendulum are distinguished by making use of the criterion of periodicity ratio and are graphically demonstrated for varying system parameters and different initial conditions. Periodic and quasiperiodic routes to chaos are analyzed on the basis of period–quasiperiodic–chaotic diagrams.  相似文献   

12.
Lee  Won Kyoung  Park  Hae Dong 《Nonlinear dynamics》1997,14(3):211-229
An investigation into chaotic responses of a weakly nonlinear multi-degree-of-freedom system is made. The specific system examined is a harmonically excited spring pendulum system, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. By the method of multiple scales the original nonautonomous system is reduced to an approximate autonomous system of amplitude and phase variables. The approximate system is shown to have Hopf bifurcation and a sequence of period-doubling bifurcations leading to chaotic motions. In order to examine what happens in the original system when the approximate system exhibits chaos, we compare the largest Lyapunov exponents for both systems.  相似文献   

13.
This paper presents a three-dimensional autonomous Lorenz-like system formed by only five terms with a butterfly chaotic attractor. The dynamics of this new system is completely different from that in the Lorenz system family. This new chaotic system can display different dynamic behaviors such as periodic orbits, intermittency and chaos, which are numerically verified through investigating phase trajectories, Lyapunov exponents, bifurcation diagrams and Poincaré sections. Furthermore, this new system with compound structures is also proved by the presence of Hopf bifurcation at the equilibria and the crisis-induced intermittency.  相似文献   

14.

This work deals with the dynamics of a network of piezoelectric micro-beams (a stack of disks). The complete synchronization condition for this class of chaotic nonlinear electromechanical system with nearest-neighbor diffusive coupling is studied. The nonlinearities within the devices studied here are in both the electrical and mechanical components. The investigation is made for the case of a large number of coupled discrete piezoelectric disks. The problem of chaos synchronization is described and converted into the analysis of the stability of the system via its differential equations. We show that the complete synchronization of N identical coupled nonlinear chaotic systems having shift invariant coupling schemes can be calculated from the synchronization of two of them. According to analytical, semi-analytical predictions and numerical calculations, the transition boundaries for chaos synchronization state in the coupled system are determined as a function of the increasing number of oscillators.

  相似文献   

15.
The paper describes the appearance of a novel high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear interaction of the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional discrete Kuramoto model, we outline the region of phase chaos in the parameter plane, distinguish the region where the phase chaos coexists with other periodic attractors, and demonstrate, in addition, that the transition to the phase chaos takes place through the torus destruction scenario. Published in Neliniini Kolyvannya, Vol. 11, No. 2, pp. 217–229, April–June, 2008.  相似文献   

16.
Bifurcation analysis of a double pendulum with internal resonance   总被引:1,自引:1,他引:0  
IntroductionAnonlineardynamicalsystemmayexhibitcomplexdynamicbehaviorinthevicinityofacompoundcriticalpoint[1].AccordingtothestructureoftheJacobianevaluatedatthecriticalpoint,thesystemsmaybeclassified,ingeneral,asco_dimensionone,co_dimensiontwo,etc.[2].Wheno…  相似文献   

17.
This paper considers an ensemble of Chua oscillators bidirectionally coupled in a ring geometry where locally coupled circuits form a closed loop of signal transmission. The spontaneous dynamics of this system is studied numerically for different coupling strength. A transition from periodic to chaotic regimes is observed when the coupling decreases. In the former situation, characterized by high coupling, all the circuits oscillate with pseudo-sinusoidal dynamics on periodic attractors; in the latter they evolve on the same-type of chaotic attractor with a progression of the dynamics from the Chua's spiral to the double scroll as the coupling decreases. The emerging global dynamics is markedly different in the two cases and a phase transition between highly ordered and highly disordered global dynamics is observed. Synchronization and traveling waves moving along the ring are identified in the non-chaotic regime, while spatio-temporal chaos results for very low coupling. Complex patterns formation appears at the “edge of chaos”, for a small couplings interval after the transition between these two regimes.  相似文献   

18.
含三次耦合项的两自由度Duffing系统的共振及混沌行为   总被引:1,自引:0,他引:1  
研究了一类含三次耦合项的两自由度Duffing系统的动力学行为。首先应用多尺度方法近似求解系统的一阶稳态响应。通过讨论系统的主共振和1∶1内共振,分析了三次耦合项对系统响应的影响。随后研究系统随外加周期力强度变化的分岔过程,发现除了常见的倍周期分岔通向混沌外,还存在一种直接由周期运动进入混沌的突发路径。结合对系统的最大Lyapunov指数,相轨图及Poincar啨映射的分析验证了上述结论。  相似文献   

19.
参数激励耦合系统的复杂动力学行为分析   总被引:3,自引:0,他引:3  
分析了耦合van der Pol振子参数共振条件下的复杂动力学行为.基于平均方程,得到了参数平面上的转迁集,这些转迁集将参数平面划分为不同的区域,在各个不同的区域对应于系统不同的解.随着参数的变化,从平衡点分岔出两类不同的周期解,根据不同的分岔特性,这两类周期解失稳后,将产生概周期解或3—D环面解,它们都会随参数的变化进一步导致混吨.发现在系统的混沌区域中,其混吨吸引子随参数的变化会突然发生变化,分解为两个对称的混吨吸引子.值得注意的是,系统首先是由于2—D环面解破裂产生混吨,该混吨吸引子破裂后演变为新的混吨吸引子,却由倒倍周期分岔走向3—D环面解,也即存在两条通向混沌的道路:倍周期分岔和环面破裂,而这两种道路产生的混吨吸引子在一定参数条件下会相互转换.  相似文献   

20.
The study of chaos has generated enormous interest in exploring the complexity of the behavior in nature and in technology. Many of the important features of chaotic dynamical systems can be seen using experimental and computational methods in simple nonlinear mechanical systems or electronic circuits. Starting with the study of a chaotic nonlinear mechanical system (driven damped pendulum) or a nonlinear electronic system (circuit Chua) we introduce the reader into the concepts of chaos order in Sharkovsky's sense, and topological invariants (topological entropy and topological frequencies). The Kirchhoff's circuit laws are a pair of laws that deal with the conservation of charge and energy in electric circuits, and the algebraic theory of graphs characterizes these linear systems in terms of cycles and cocycles (or cuts). Here we discuss methods (topological semiconjugacy to piecewise linear maps and Markov graphs) to find a similar situation for the nonlinear dynamics, to understanding chaotic dynamics. Thus to chaotic dynamics we associate a Markov graph, where the dynamical and topological invariants will be seen as graph theoretical quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号