首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responsive polymeric brushes of poly(methacrylic acid) (PMAA) were grafted from silicon surfaces using controlled surface-initiated atom-transfer radical polymerization (SI-ATRP). The growth kinetics of PMAA was investigated with respect to the composition of the ATRP medium by grafting the polymer in mixtures of water and methanol with different ratios. The dissociation behavior of the polymer layers was characterized by FTIR titration after incubating the polymer-grafted substrates in PBS buffer solutions with different pH values. PMAA layers show a strong pH-dependent behavior with an effective pK(a) of the bulk polymer brush of 6.5 ± 0.2, which is independent of the polymer brush thickness and methanol content of the ATRP grafting medium. The pH-induced swelling and collapse of the grafted polymer layers were quantified in real time by in situ ellipsometry in liquid environment. Switching between polymer conformations at pH values of 4 and 8 is rapid and reversible, and it is characterized by swelling factors (maximum thickness/minimum thickness) that increase with decreasing the methanol content of the SI-ATRP medium.  相似文献   

2.
Semi-analytical scaling theory is used to describe quenched and annealed (weakly charged, ionizable, charge-regulating) polyelectrolyte brushes in electrolyte solutions of arbitrary salt concentration. An Alexander-De Gennes box model with homogeneous distribution of polymer segments and the free ends located at the edge of the brush is assumed, as is local electroneutrality in the brush. For annealed polyelectrolyte and in the low-salt regime, the theory predicts that for sufficiently dense brushes, the salt concentration has a small influence on brush height, while the brush expands with increasing grafting density, in agreement with experiment. Expressions are presented for the interaction free energy of compressed ionizable and quenched polyelectrolyte brushes (proportional to the force between particles or curved surfaces). In all cases, the required prefactors are explicitly stated. The theory is compared directly with published experiments on the influence of salt concentration, pH, and grafting density on the thickness and interaction force of polystyrene sulfonate (quenched) and poly(meth)acrylic acid (annealed) brushes. In general, trends are well reproduced but significant deviations remain.  相似文献   

3.
The site‐specific attachment of nanoparticles is of interest for biomaterials or biosensor applications. Polymer brushes can be used to regulate this adsorption, so the conditions for selective adsorption of phosphonate‐functionalized nanoparticles onto micropatterned polymer brushes with different functional groups are optimized. By choosing the strong polyelectrolytes poly(3‐sulfopropyl methacrylate), poly(sulfobetaine methacrylate), and poly[2‐(methacryloyloxy)ethyl trimethylammonium chloride], it is possible to direct the adsorption of nanoparticles to specific regions of the patterned substrates. A pH‐dependent adsorption can be achieved by using the polycarboxylate brush poly(methacrylic acid) (PMAA) as substrate coating. On PMAA brushes, the nanoparticles switch from attachment to the brush regions to attachment to the grooves of a patterned substrate on changing the pH from 3 to 7. In this manner, patterned substrates are realized that assemble nanoparticles in pattern grooves, in polymer brush areas, or substrates that resist the deposition of the nanoparticles. The nanoparticle deposition can be directed in a pH‐dependent manner on a weak polyelectrolyte, or is solely charge‐dependent on strong polyelectrolytes. These results are correlated with surface potential measurements and show that an optical trap is a versatile method to directly probe interactions between nanoparticles and polymer brushes. A model for these interactions is proposed based on the optical trap measurements.  相似文献   

4.
We synthesize polybase brushes and investigate their swelling behavior. Poly(2-(dimethylamino)ethyl methacrylate)) (PDMAEMA) brushes are prepared by the "grafting from" method using surface-initiated Atom Transfer Radical Polymerization to obtain dense brushes with relatively monodisperse chains (PDI = 1.35). In situ quaternization reaction can be performed to obtain poly(2-(trimethylamino)ethyl methacrylate)) (PTMAEMA) brushes. We determine the swollen thickness of the brushes using ellipsometry and neutron reflectivity techniques. Brushes are submitted to different solvent conditions to be investigated as neutral brushes and weak and strong polyelectrolyte brushes. The swelling of the brushes is systematically compared to scaling models. It should be pointed out that the scaling analysis of different types of brushes (neutral polymer and weak and strong polyelectrolyte brushes) is performed with identical samples. The scaling behavior of the PDMAEMA brush in methanol and the PTMAEMA brush in water is in good agreement with the predicted scaling laws for a neutral polymer brush in a good solvent and a polyelectrolyte brush in the osmotic regime. The salt-induced contraction of the quaternized brush is observed for high salt concentration, in agreement with the predicted transition between the regimes of the osmotic brush and the salted brush. From the crossover concentration, we calculate the effective charge ratio of the brush following the Manning counterion condensation. We also use PDMAEMA brushes as pH-responsive polybase brushes. The swelling behavior of the polybase brush is intermediate with respect to the behavior of the neutral polymer brush in a good solvent and the behavior of the quenched polyelectrolyte brush, as expected. The effective charge ratio of the PDMAEMA brush is determined as a function of pH using the scaling law of the polyelectrolyte brush in the osmotic regime.  相似文献   

5.
Most of the modern theories of grafted polyelectrolyte brushes are valid only for moderate stretching of the polyelectrolyte. However, particularly at low ionic strength and high grafting densities, even a moderate charge of the polyelectrolyte can generate a strong stretching. A simple mean field model for strongly stretched grafted polyelectrolyte brushes is suggested, based on an approximate calculation of the partition function of a polyelectrolyte chain. It is shown that the average Boltzmann factor of a possible chain configuration can be approximated by the Boltzmann factor of a configuration with a constant monomer distribution, for which the free energy can be readily obtained. The monomer density in the brush and the interaction between two surfaces with grafted polyelectrolyte brushes could be calculated as a statistical average over all possible configurations. Some simple analytical results are derived, and their accuracy is examined. The dependence of the brush thickness on the electrolyte concentration is investigated, and it is shown that the trapping of a fraction of counterions in the brush influences strongly the thickness of the brush. When two surfaces with grafted polyelectrolyte brushes approach each other more rapidly than the ion diffusion parallel to the surface, the trapping of the counterions between the brushes can affect the interactions by orders of magnitude.  相似文献   

6.
Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.  相似文献   

7.
Nanomechanical properties of end grafted polymer layers were studied by AFM based, colloidal probe compression measurements. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brush was grafted from planar Si surface and poly(methyl methacrylate) (PMAA) brush was grown on colloidal probe by surface initiated atom transfer radical polymerization. PMAA brush was further modified with adhesion promoting arginyl-glycyl-aspartic acid (RGD) peptide sequences. Force–distance curves were obtained for systems where the polymer brushes were probed on unmodified surfaces or face to each other. For each systems the grafting density of the polymer brush was determined applying a ‘box’ like polymer brush model based on the theory by de Gennes. ‘Average’ grafting density was calculated in cases when two polymer brushes face each other: RGD functionalized PMAA or PMAA against PSBMA. For our systems the values for the grafting density was between 0.04 and 0.11 nm?2. Furthermore the measured approach force–distance curves were fitted according to the Hertz model and the apparent Young’s modulus was determined for all measurements being in a range of around 250 kPa at physiological conditions.  相似文献   

8.
Cyclic voltammetry (CV) was employed to characterize the electrochemical behavior of polyelectrolyte brushes with immobilized electroactive counterions in response to external changes in concentration and composition of the supporting electrolyte and as a function of brush thickness. Poly(methacryloyloxy)ethyl-trimethyl-ammonium chloride (PMETAC) brushes were synthesized on Au substrates via atom transfer radical polymerization followed by ion-exchange with ferricyanide ions ([Fe(CN)6]3-) as redox probes. CV measurements of the modified PMETAC brushes showed the typical electrochemical response corresponding to a surface-confined electroactive species and the redox counterions, as [Fe(CN)6]3- species form stable ion pairs with the quaternary ammonium groups of the brush. The electron-transfer features of PMETAC brushes with different thicknesses, as characterized by CV and UV-vis spectroscopy, revealed that the charge density probed by CV was lower than the charge density measured by UV-vis spectroscopy. The electrode current decreased significantly with increasing concentration of supporting electrolyte due to the effect of the Donnan potential. Hydrophobic counterions, ClO4-, which induced brush collapse, lead to significantly reduced electrode currents.  相似文献   

9.
We present a self-consistent field analytical theory of a polymer brush formed by weakly charged pH-sensitive (annealing) polyelectrolytes tethered to a solid-liquid interface and immersed in buffer solution of low molecular weight salt. We use the Poisson-Boltzmann framework, applied by us previously to polyelectrolyte (PE) brushes with quenched charge (Zhulina, E. B.; Borisov, O. V. J. Chem. Phys. 1997, 107, 5952). This approach allows for detailed analysis of the internal structure of annealing PE brush in terms of polymer density distribution, profiles of electrostatic potential and of local degree of chain ionization as a function of buffer ionic strength and pH without any assumptions on mobile ion distribution imposed in earlier scaling-type models. The presented analytical theory recovers all major asymptotic dependences for average brush properties predicted earlier. In particular, a nonmonotonic dependence of brush thickness on ionic strength and grafting density is confirmed and specified with accuracy of numerical coefficients including crossover regions. Moreover, the theory predicts qualitatively new effects, such as, e.g., disproportionation of tethered polyions into weakly charged concentrated proximal and strongly charged sparse distal brush domains at low salt and moderate grating densities. The presented results allow us to quantify responsive features of annealing PE brushes whose large-scale and local conformational properties can be manipulated by external stimuli.  相似文献   

10.
We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.  相似文献   

11.
The interaction of surface‐attached weak polyelectrolyte brushes, grown directly from the surface of a solid substrate by surface‐initiated polymerization, with weak polyelectrolyte molecules in solution is studied. In addition, the formation of PEL multilayers onto such brush substrates is investigated. A strong template effect is observed and the thickness of each adsorbed layer is closely related to the thickness of the initial brush. Thus monolayers of more than 100 nm can be adsorbed in one single dipping cycle.

Layer thickness of PEI layers adsorbed to PMAA brushes as a function of the thickness of the surface‐attached monolayer. The solid line represents a case in which the PEI layer has exactly the same thickness as the brush monolayer.  相似文献   


12.
We have investigated a novel method of remotely switching the conformation of a weak polybase brush using an applied voltage. Surface-grafted polyelectrolyte brushes exhibit rich responsive behavior and show great promise as "smart surfaces", but existing switching methods involve physically or chemically changing the solution in contact with the brush. In this study, high grafting density poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes were grown from silicon surfaces using atom transfer radical polymerization. Optical ellipsometry and neutron reflectivity were used to measure changes in the profiles of the brushes in response to DC voltages applied between the brush substrate and a parallel electrode some distance away in the surrounding liquid (water or D(2)O). Positive voltages were shown to cause swelling, while negative voltages in some cases caused deswelling. Neutron reflectometry experiments were carried out on the INTER reflectometer (ISIS, Rutherford Appleton Laboratory, UK) allowing time-resolved measurements of polymer brush structure. The PDMAEMA brushes were shown to have a polymer volume fraction profile described by a Gaussian-terminated parabola both in the equilibrium and in the partially swollen states. At very high positive voltages (in this study, positive bias means positive voltage to the brush-bearing substrate), the brush chains were shown to be stretched to an extent comparable to their contour length, before being physically removed from the interface. Voltage-induced swelling was shown to exhibit a wider range of brush swelling states in comparison to pH switching, with the additional advantages that the stimulus is remotely controlled and may be fully automated.  相似文献   

13.
We apply fluorescent correlation spectroscopy (FCS) to investigate solution dynamics of a synthetic polyelectrolyte, i.e., a weak polycarboxylic acid in aqueous solutions. The technique brings single molecule sensitivity and molecular specificity to dynamic measurements of polyelectrolyte solutions. Translational diffusion of Alexa-labeled poly(methacrylic acid), PMAA*, chains was studied in very dilute, 10(-4) mg/ml, solutions as a function of solution pH and ionic strength. The observed changes in diffusion coefficients were consistent with about twofold expansion of PMAA* coils when pH was changed from 5 to 8, and with chain contraction for alkaline metal ion concentrations from 0.01 to 0.1 M. The dependence of the hydrodynamic size of PMAA* chains on the counterion type followed the sequence: Li(+)>Na(+) approximately equal to Cs(+)>K(+). The dependence of translational diffusion on polyacid concentration was weak at the low concentration limit, but chain motions were significantly slower at higher polymer concentrations when PMAA chains overlapped. Finally, measurements of dynamics of PMAA* chains in "salt-free" solutions showed that self-diffusion of PMAA* chains significantly slowed down when PMAA concentration was increased, probably reflecting the sensitivity of PMAA* translational motions to the onset of interchain domain formation. These results illustrate the utility of the FCS technique for studying hydrodynamic sizes of polyelectrolyte coils in response to variation in solution pH or concentration of salt and polyelectrolytes. They also suggest that FCS will be a promising technique for selective observation of the dynamics of polyelectrolyte components in complex polymer mixtures.  相似文献   

14.
Using molecular dynamics simulations in combination with scaling analysis, we have studied the effects of the solvent quality and the strength of the electrostatic interactions on the conformations of spherical polyelectrolyte brushes in salt-free solutions. The spherical polyelectrolyte brush could be in one of four conformations: (1) a star-like conformation, (2) a "star of bundles" conformation in which the polyelectrolyte chains self-assemble into pinned cylindrical micelles, (3) a micelle-like conformation with a dense core and charged corona, or (4) a conformation in which there is a thin polymeric layer uniformly covering the particle surface. These different brush conformations appear as a result of the fine interplay between electrostatic and monomer-monomer interactions. The brush thickness depends nonmonotonically on the value of the Bjerrum length. This dependence of the brush thickness is due to counterion condensation inside the brush volume. We have also established that bundle formation in poor solvent conditions for the polymer backbone can also occur in a planar polyelectrolyte brush. In this case, the grafted polyelectrolyte chains form hemispherical aggregates at low polymer grafting densities, cylindrical aggregates at an intermediate range of the grafting densities, and vertically oriented ribbon-like aggregates at high grafting densities.  相似文献   

15.
Diffusive transport within complex environments is a critical piece of the chemistry occurring in such diverse membrane systems as proton exchange and bilayer lipid membranes. In the present study, fluorescence correlation spectroscopy was used to evaluate diffusive charge transport within a strong polyelectrolyte polymer brush. The fluorescent cation rhodamine-6G was used as a counterion probe molecule, and the strong polyelectrolyte poly(styrene sulfonate) was the polymer brush. Such strong polyelectrolyte brushes show promise for charge storage applications, and thus it is important to understand and tune their transport efficiencies. The polymer brush demonstrated preferential solvation of the probe counterion as compared to solvation by the aqueous solvent phase. Additionally, diffusion within the polymer brush was strongly inhibited, as evidenced by a decrease in diffusion constant of 4 orders of magnitude. It also proved possible to tune the transport characteristics by controlling the solvent pH, and thus the ionic strength of the solvent. The diffusion characteristics within the charged brush system depend on the brush density as well as the effective interaction potential between the probe ions and the brush. In response to changes in ionic strength of the solution, it was found that these two properties act in opposition to each other within this strong polyelectrolyte polymer brush environment. A stochastic random walk model was developed to simulate interaction of a diffusing charged particle with a periodic potential, to show the response of characteristic diffusion times to electrostatic field strengths. The combined results of the experiments and simulations demonstrate that responsive diffusion characteristics in this brush system are dominated by changes in Coulombic interactions rather than changes in brush density. More generally, these results support the use of FCS to evaluate local charge transport properties within polyelectrolyte brush systems, and demonstrate that the technique shows promise in the development of novel polyelectrolyte films for charge storage/transport materials.  相似文献   

16.
Spatial dependencies of monomer volume fraction profiles of pH responsive polyelectrolyte brushes were investigated using field theories and neutron reflectivity experiments. In particular, planar polyelectrolyte brushes in good solvent were studied and direct comparisons between predictions of the theories and experimental measurements are presented. The comparisons between the theories and the experimental data reveal that solvent entropy and ion‐pairs resulting from adsorption of counterions from the added salt play key roles in affecting the monomer distribution and must be taken into account in modeling polyelectrolyte brushes. Furthermore, the utility of this physics‐based approach based on these theories for the prediction and interpretation of neutron reflectivity profiles in the context of pH responsive planar polyelectrolyte brushes such as polybasic poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) and polyacidic poly(methacrylic acid) (PMAA) brushes is demonstrated. The approach provides a quantitative way of estimating molecular weights of the polymers polymerized using surface‐initiated atom transfer radical polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 956–964  相似文献   

17.
The synthesis of AB diblock copolymer polyampholyte polymer brushes of the type Si/SiO2//poly(acrylic acid-b-vinyl pyridine) prepared using atom transfer radical polymerization is reported. Both 2- and 4-vinyl pyridine have been used. The diblock polyampholyte polymer brushes demonstrate stimuli-responsive behavior with respect to pH, showing both polyelectrolyte and polyampholyte effects. Furthermore, we have quaternized the 4-vinyl pyridine segments to form a mixed weak/strong, or annealed/quenched, polyelectrolyte system. The quaternized polymer brush exhibits different pH-responsive behavior, with decreasing film thickness being observed with increasing pH.  相似文献   

18.
Neutral and charged polymer brushes covalently attached to planar solid surfaces were generated by using self-assembled monolayers of an azo initiator and radical chain polymerization in situ. The brushes were characterized by FTIR-spectroscopy, optical waveguide-spectroscopy and Ellipsometry. Especially the film thicknesses of surface bound polyelectrolyte (PEL) monolayers were measured by optical waveguide spectroscopy (OWS) as a function of the humidity of the environment. The PEL brushes show strong increases in thickness as well as strong decrease of the refractive index of the surface attached layer due to water incorporation caused by the exposure to the humid environment. Additionally the behavior of neutral as well as charged brushes in contact with solvent was investigated by using multiple-angular-scans of ellipsometry in a total internal reflectance setup. The scaling behavior of the brush height as a function of the graft density of the attached polymer molecules was investigated for the neutral brush as well as for the PEL brush system.  相似文献   

19.
The surface wettabilities of polymer brushes with hydrophobic and hydrophilic functional groups were discussed on the basis of conventional static and dynamic contact angle measurements of water and hexadecane in air and captive bubble measurements in water. Various types of high-density polymer brushes with nonionic and ionic functional groups were prepared on a silicon wafer by surface-initiated atom-transfer radical polymerization. The surface free energies of the brushes were estimated by Owens-Wendt equation using the contact angles of various probe liquids with different polarities. The decrease in the water contact angle corresponded to the polarity of fluoroalkyl, hydroxy, ethylene oxide, amino, carboxylic acid, ammonium salt, sulfonate, carboxybetaine, sulfobetaine, and phosphobetaine functional groups. The poly(2-perfluorooctylethyl acrylate) brush had a low surface free energy of approximately 8.7 mN/m, but the polyelectrolyte brushes revealed much higher surface free energies of 70-74 mN/m, close to the value for water. Polyelectrolyte brushes repelled both air bubbles and hexadecane in water. Even when the silicone oil was spread on the polyelectrolyte brush surfaces in air, once they were immersed in water, the oil quickly rolled up and detached from the brush surface. The oil detachment behavior observed on the superhydrophilic polyelectrolyte brush in water was explained by the low adhesion force between the brush and the oil, which could contribute to its excellent antifouling and self-cleaning properties.  相似文献   

20.
Detailed analysis of an interesting poly(methacrylic acid) (PMAA) brush structure in water of a diblock copolymer [(Et(2)SB(m)-b-(MMA)(n), where Et(2)SB is diethylsilacyclobutane] monolayer reported previously was performed by X-ray and neutron reflectometry and indicated that the hydrophilic layer formed with a relatively long PMAA chain is not a simple layer but is divided into two layers, that is, a "carpet"-like dense PMAA layer near the hydrophobic layer and a polyelectrolyte brush layer. The hydrophilic chain length dependence of the diblock copolymer monolayer was analyzed using m:n = 30:x polymer samples, especially of the PMAA double layer structure. With the increase in PMAA chain length in polymer samples, a carpet layer is mainly formed up to n approximately 50. With further increase in the PMAA chain length beyond n approximately 50, a well-defined brush layer appears. On the other hand, the variation in hydrophobic layer thickness with methacrylic acid unit is minimum at the critical PMAA length, that is, n approximately 50 under a constant surface pressure condition. It is strongly suggested that the two discrete layers contribute differently to surface pressure. Furthermore, from the comprehensive viewpoint, the major factor for brush formation was clarified not to be the absolute length of the PMAA chain, but the ratio of PEt(2)SB and PMAA chain length is an important factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号