首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By essence, all kinds of chromatographic methods use the partitioning of solutes between a stationary and a mobile phase to separate them. Not surprisingly, separation methods are useful to determine accurately the liquid-liquid distribution constants, commonly called partition coefficient. After briefly recalling the thermodynamics of the partitioning of solutes between two liquid phases, the review lists the different methods of measurement in which chromatography is involved. The shake-flask method is described. The ease of the HPLC method is pointed out with its drawback: the correlation is very sensitive to congeneric effect. Microemulsion electrokinetic capillary electrophoresis has become a fast and reliable method commonly used in industry. Counter-current chromatography (CCC) is a liquid chromatography method that uses a liquid stationary phase. Since the CCC solute retention volumes are only depending on their partition coefficients, it is the method of choice for partition coefficient determination with any liquid system. It is shown that Ko/w, the octanol-water partition coefficients, are obtained by CCC within the -1 < log Ko/w < 4 range, without any correlation or standardization using octanol as the stationary phase. Examples of applications of the knowledge of liquid-liquid partition coefficient in the vast world of solvent extraction and hydrophobicity estimation are presented.  相似文献   

2.
The octanol-water partition coefficients (Poct) of 17 antiadrenergic beta-blocker compounds were determined by counter-current chromatography (CCC). Since CCC uses a biphasic liquid system, the octanol-water liquid system was used with essentially an octanol stationary phase and aqueous buffer mobile phase. The Poct coefficients were obtained directly without any extrapolation. The measured Poct values were in the 0.0015-4070 range (-2.8 < log Poct < 3.6). Since the beta-blocking agents are ionizable compounds, the Poct values obtained were strongly dependent on the aqueous-phase pH. The apparent Poct coefficients of the beta-blockers were determined at three different pH values (approximately 3, 7 and 11) using 0.01 M ammonium phosphate buffers saturated with octanol. A model allowed us to obtain the molecular and ionic Poct value using the solute pKa with these three experimental octanol-water coefficients. Often, the Poct coefficients of the molecular forms obtained with the CCC method differ significantly from computed literature values and/or experimental values obtained by extrapolation. Relationships between biological properties and hydrophobicity were also examined.  相似文献   

3.
The main feature of counter-current chromatography (CCC) is that the stationary phase is a liquid as well as the mobile phase. The retention volumes of solutes are directly proportional to their distribution coefficients K(D) in the biphasic liquid system used in the CCC column. Solutes with high K(D) coefficients are highly retained in the column. The back-extrusion method (BECCC) uses the fact that the liquid stationary phase, that contains the retained solutes, can be easily moved. Switching the column inlet and outlet ports without changing the liquid phase used as the mobile phase causes the rapid collapse of the two immiscible liquid phases inside the column, the previously stationary phase being gathered at the new column outlet. Then this previously stationary liquid phase is extruded outside the CCC column carrying the retained solutes. The back-extrusion method is tested with a standard mixture of five compounds and compared with the recently described elution-extrusion method. It is shown that the chromatographic resolution obtained during the back-extrusion step is good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. However, a major drawback of the BECCC method is that all solutes are split between the liquid phases according to their distribution ratios when the CCC column equilibrium is broken. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode, eluting solutes with small and medium distribution ratios. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column and produce a broad peak showing after the stationary phase extrusion.  相似文献   

4.
Berthod A  Schmitt N 《Talanta》1993,40(10):1489-1498
Countercurrent chromatography (CCC) is a separation technique in which the stationary phase is a liquid. The liquid stationary phase retention is a critical problem in CCC. The retention of 18 organic solvents in a hydrodynamic CCC apparatus was measured with an aqueous mobile phase, the centrifuge spin rate and the mobile phase flow rate being constant, 800 rpm and 2 ml/min, respectively. Conversely, water retention was measured when the 18 solvents were the mobile phases. A direct relationship between the liquid stationary phase retention and the phase density difference was found. The liquid phase density difference is the most important parameter for stationary phase retention in a hydrodynamic CCC apparatus with coiled tubes. The chromatographic retention of formanilide was measured in biphasic systems and expressed as the formanilide partition coefficient. It is shown that the partition coefficient correlates with the Reichardt polarity index of the organic solvent when the liquid stationary phase retention volume does not.  相似文献   

5.
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.  相似文献   

6.
7.
Countercurrent chromatography (CCC) is a liquid chromatography (LC) technique with a special column able to retain a liquid stationary phase while the liquid mobile phase is pumped through. The coil planet centrifuge machines are made of open tube wound on spools. A simple test is proposed. The methanol-water (90:10, v/v)-heptane biphasic system is used with heptane as the mobile phase in the ascending or tail-to-head mode. The methanol-water stationary phase retention volume is measured at different flow-rates and rotor rotation speeds. After every machine equilibration, an alkylbenzene mixture is injected and the retention factors, peak efficiencies and resolution factors are measured or calculated for each solute. The wealth of information contained in the data set obtained is demonstrated. Four coil planet centrifuge machines of very different characteristics and one hydrostatic CCC machine with channels and ducts were submitted to the test. It was shown that the Sf, stationary retention factor, obtained with these machines was linearly dependent on the square root of F, the mobile phase flow-rate [Q. Du, C. Wu, G. Qian, P. Wu, Y. Ito, J. Chromatogr. A 835 (1999) 231-235]. It is shown that the slopes of the Sf versus F(1/2) lines could be related to a minimum rotor rotation, omega(mini), necessary to obtain the hydrodynamic equilibrium. The Sf and F parameters give the mobile phase linear velocity, u. It is shown that u is proportional to the square root of omega, the rotor rotation speed. The slope and intercept of the latter relationship also result in an omega(mini) value coherent with the first one. With the peak efficiencies and chromatographic resolution factors obtained for toluene and hexylbenzene, the parameters: number of plates per tubing turn, machine volume for one plate, and tubing length for one plate, were calculated and compared for the five machines. The internal diameter of the tubing used is shown to be a critical parameter acting on the machine volume and number of tubing turns.  相似文献   

8.
Abstract

Centrifugal Partition Chromatography (CPC) is a variant of countercurrent chromatography (CCC). As in CCC, two immiscible liquids are used. The first liquid is the stationary phase, the second is the mobile phase. The liquid stationary phase is held in channels engraved in seveal polychlorotrifluoroethylene (PCTFE) plates. One hundred channels are engraved on each PCTFE plate. Four PCTFE plates are assembled together in a cartridge. Up to 12 cartridges (4800 channels) can be loaded in the rotor of a centrifuge. The centrifugal field, generated by the spinning rotor, holds the stationary phase sufficiently that a mobile phase can be pumped through in (Figure 1). The system is analyzed in detail.  相似文献   

9.
Traditional Chinese medicines (TCMs) have attracted much attention in recent years. Elution-extrusion and/or back-extrusion counter-current chromatography (EECCC/BECCC) both take full advantage of the liquid nature of the stationary phase. They effectively extend the solute hydrophobicity window that can be studied and rendered the CCC technique particularly suitable for rapid analysis of complex samples. In this paper, a popular traditional Chinese medicine, Evodia rutaecarpa, was used as the target complex mixture for extrusion CCC separations. With a carefully selected biphasic liquid system (n-hexane/ethyl acetate/methanol/water, 3/2/3/2, v/v) and optimized conditions (VCM = VC, mobile phase flow rate: 3 mL/min in descending mode, sample loading: 100 mg), five fractions could be obtained in only 100 min on a 140-mL capacity CCC instrument using both elution- and back-extrusion methods. Each fraction was analyzed and identified compared with the data of major standards using LC/MS. Moreover, the performance of both extrusion protocols was systematically compared and summarized. EECCC could be operated continuously and was found extremely suitable for high-throughput separation; however, post-column addition of a clarifying reagent is recommended to smooth the UV-signal during the extrusion process. Considering BECCC, the practical operation is very simple by just switching a 4-port valve to change the flow direction. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode so that solutes with small and medium distribution constants have been eluted. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column, mix together and produce a broad peak showing in the mobile phase eluting after the stationary phase extrusion. Compared with classical CCC or other preparative separation tools, extrusion CCC approaches exhibit distinguished superiority in the modernization process of traditional Chinese medicines.  相似文献   

10.
There is some confusion in chromatography between terms such as solute distribution ratio, distribution constant and partition coefficient. These terms are very precisely defined in the field of liquid-liquid systems and liquid-liquid extraction as well as in the field of chromatography with sometimes conflicting definitions. Countercurrent chromatography (CCC) is a chromatographic technique in which the stationary phase is a support-free liquid. Since the mobile phase is also liquid, biphasic liquid systems are used. This work focuses on the exact meaning of the terms since there are consequences on experimental results. The retention volumes of solutes in CCC are linearly related to their distribution ratios. The partition coefficient that should be termed (IUPAC recommendation) distribution constant is linked to a single definite species. Using benzoic acid that can dimerize in heptane and ionize in aqueous phase and an 18 mL hydrodynamic CCC column, the role and relationships between parameters and the consequences on experimental peak position and shape are discussed. If the heptane/water distribution constant (marginally accepted to be called partition coefficient) of benzoic acid is 0.2 at 20 °C and can be tabulated in books, its CCC measured distribution ratio or distribution coefficient can change between zero (basic aqueous mobile phase) and more than 25 (acidic aqueous mobile phase and elevated concentration). Benzoic acid distribution ratio and partition coefficient coincide only when both dimerization and ionization are quenched, i.e. at very low concentration and pH 2. It is possible to quench dimerization adding butanol in the heptane/water system. However, butanol additions also affect the partition coefficient of benzoic acid greatly by increasing it.  相似文献   

11.
Abstract

Centrifugal Partition Chromatography (CPC) is a variant of countercurrent chromatography (CCC). As in CCC, two immiscible liquids are used. The first liquid is the stationary phase, the second is the mobile phase. The liquid stationary phase is held in channels engraved in several polychlorotrifluoroethylene (PCTFE) plates. One hundred channels are engraved on each PCTFE plate. Four PCTFE plates are assembled together in a cartridge. Up to 12 cartridges (4800 channels) can be loaded in the rotor of a centrifuge. The centrifugal field, generated by the spinning rotor, holds the stationary phase sufficiently that a mobile phase can be pumped through it. This system is analyzed in detail. The stationary phase evolution versus time is studied. A complete derivation is made of the relationship linking system pressure to the spin and flow rate as well as to the physico-chemical properties of the two liquids, i.e., density and viscosity.  相似文献   

12.
Counter-current chromatography (CCC) is a form of liquid–liquid partition chromatography. It requires two immiscible solvent phases; the stationary phase is retained in the separation column, generally by centrifugal force, while the mobile phase is eluted. We recently replaced the mobile phase with supercritical fluid carbon dioxide (SF CO2). Since the solvent strength of SF CO2 can be varied by changing the temperature and pressure of the system, separation adjustments are thus more versatile. We investigated the pressure and temperature effects on resolution using water and low-carbon alcohol mixtures as the stationary phases. It was demonstrated that these special properties of SF CO2 were indeed beneficial to the optimization of separations. In addition, the phase retention ratio was examined in terms of separation resolution. The results appeared very similar to those obtained from conventional traditional CCC. This study should be helpful for the future development of SF applications in CCC.  相似文献   

13.
The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of β-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the β-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the β-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic β-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log kw values (extrapolated retention to pure water) were correlated with the molecular (log Po/w) and apparent (log Papp) octanol–water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity.  相似文献   

14.
15.
Countercurrent chromatography (CCC) is a separation technique that uses a biphasic liquid system; one liquid phase is the mobile phase, the other liquid phase is the stationary phase. Selection of the appropriate liquid system can be a problem in CCC, since it is necessary to select both the “column” and the mobile phase at the same time as the first is completely dependent on the second. A range of systems with various proportions of solvents were developed to ease this choice; 23 variations of the heptane/ethyl acetate/methanol/water biphasic liquid system were labeled A to Z. This range proved to be extremely useful and became the popular Arizona (AZ) liquid system. However, authors often replace the heptane with hexane. In this work, the chemical compositions of the upper phases and the lower phases of 55 Arizona systems made with various alkanes (pentane, hexane, heptane, isooctane and cyclohexane) were determined by gas chromatography and Karl Fischer titration. The test mixture separated consisted of five steroid compounds. The lower phases were found to have similar compositions when different alkanes were used, but the upper phases were found to change. Exchanging heptane for hexane or isooctane produced minimal changes in the CCC chromatogram, while changing the proportions of the solvents resulted in an exponential change in the retention volumes. The high density of cyclohexane made liquid stationary phase retention difficult. All Arizona systems equilibrated within 30 min, but were not stable: water slowly hydrolyzed the ethyl acetate (as shown by a continuous decrease in the pH of the lower aqueous phase), especially in the water-rich systems (early alphabet letters).  相似文献   

16.
A new reversed stationary phase was prepared, based on thermal immobilization of trimethoxysilylpropyl modified polyethyleneimine onto silica particles endcapped with octadecyl molecules. The physicochemical and morphological properties of the stationary phase were characterized by solid state cross-polarization and magic angle spinning 29Si nuclear magnetic resonance, infrared spectroscopy, porosimetry, and elemental analysis. For the studies on reversed phase high-performance liquid chromatography (HPLC) retention, separation of the established Tanaka and Engelhardt test mixtures was performed. The stationary phase showed a typical partition mechanism for the reversed phase; however, the low hydrophobicity required a low organic content solvent in the mobile phase for chromatographic separation of more hydrophobic compounds. The stationary phase also showed low residual silanol activity for the elution of basic compounds due to the protection offered by octadecyl endcapped molecules and the competition provided by the imine groups of the polymeric layer. The proposed stationary phase possesses interesting selectivity and is convenient for applications requiring the separation of more retentive compounds in conventional HPLC columns using more aqueous mobile phases.  相似文献   

17.
Application of counter-current chromatography (CCC) for oil analysis has been suggested for the first time. CCC looks very promising as a tool for pre-concentration and isolation of trace elements from oil. Features of stationary phase retention of two-phase liquid systems (oil or oil products–aqueous nitric acid solutions) in CCC have been investigated. The influence of physicochemical properties of crude oil and oil products used as a mobile phase on the volume of stationary phase (acidic aqueous solutions) retained in CCC was studied. Chromatographic behavior of several oil samples was studied. It has been shown that physicochemical properties of test oil influence its chromatographic behavior. Optimal values of density and viscosity (ρ < 0.85 g/cm3, n < 7 cSt) of crude oil and oil products that could be analyzed using CCC were estimated. The influence of the column rotational speed and flow rate of mobile phase on the stationary phase retention was also investigated. It is known that kinetic aspects (mass transfer of elements between phases) can play a very important role in selecting an optimal composition of stationary phase for the pre-concentration of elements from oil. The influence of nitric acid concentration in the stationary phase on mass transfer was studied. Kinetic characteristic for trace element recovery has been investigated for the optimization of pre-concentration conditions of trace elements from crude oil and oil products. The extraction recoveries of Zn, Mn, Fe, Ni, V, Cu, Cd, Pb and Ba by CCC in dynamic mode are in the range of 75–95% while they are lower than 35% under batch conditions.  相似文献   

18.
Summary The dependence of the capacity factor (k′) on the concentration of the organic modifier (D) in the aqueous binary mobile phase in reversed-phase high-performance liquid chromatography has been investigated to evaluate the hydrophobicity of the solute molecule. The r-values, defined as the slope of log k′ vs. log(1/D) plots, were measured for various solutes and related to the non-polar surface area and the partition coefficients. The r-value was found to be a good indication of solute hydrophobicity. Detailed investigation of the results allowed to consider statistically the molecular posture of the solute adsorbed onto the stationary alkyl ligand.  相似文献   

19.
20.
Countercurrent chromatography (CCC) is an attractive separation method because the analytes are partitioned between two immiscible liquid phases avoiding problems related to solid stationary phase. In recent years, this technique has made great progress in separation power and detection potential. This review describes coupling strategies involving high speed CCC (HSCCC) or centrifugal partition chromatography (CPC). It includes on-line extraction–isolation, hyphenation with mass spectrometry (MS) and nuclear magnetic resonance (NMR) detectors, multidimensional CCC (MDCCC), two-dimensional CCC (2D-CCC), on-line coupling with liquid chromatography (LC), and biological tests, and innovative off-line developments. The basic principles of each method are presented and applications are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号