首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The chemical constituents from the flower, leaf and stem of Helichrysum armenium DC. (Asteraceae) growing in Iran were obtained by hydrodistillation and analyzed by GC and GC/MS. The oil of flower was characterized by higher amount of limonene (21.2%), alpha-cadinol (18.2%), borneol (11.9%), delta-cadinene (9.0%), bornyl acetate (8.0%) and alpha-humulene (7.3%). Twenty one constituents representing 96.2% of the chromatographical leaf oil were identified of which limonene (29.2%), alpha-pinene (14.4%), caryophyllene oxide (6.5%), alpha-gurjunene (6.3%), bornyl acetate (5.5%) and torreyol (5.2%) were the major components. The main components of the stem oil were limonene (23.6%), alpha-pinene (13.4%), spathulenol (6.4%), alpha-gurjunene (6.3%), caryophyllene oxide (5.3%), bornyl acetate (5.2%), beta-cubebene (4.8%) and delta-cadinene (4.3%). The composition of the oils is different, although the most abundant components are identical in leaf oil (96.2%). The antimicrobial effect of flower, leaf and stem essential oils from Helichrysum armenium was studied according to the agar diffusion cup method. The essential oils had a moderate effect on the Gram-positive and Gram-negative bacteria and had a substantial fungicidal effect on the fungi under study.  相似文献   

2.
A comparison of the chemical composition, and antioxidant and antibacterial activities of the essential oils obtained from the aerial parts of Thymus caucasicus, T. kotschyanus, and T vulgaris was carried out. The oils, obtained by hydrodistillation, were analyzed by GC and GC/MS. Twenty, 29 and 22 compounds representing 94.8%, 96.6% and 98.2% of the essential oils of T. caucasicus, T. kotschyanus and T. vulgaris, respectively, have been identified. The oil of T. caucasicus was characterized by 1,8-cineol (21.5%), thymol (12.6%), beta-fenchyl alcohol (8.7%), nerolidol (7.8%), terpinolene (7.2%), alpha-pinene (7.0%) and myrcene (6.8%). In the oil of T. kotschyanus, carvacrol (24.4%), beta-caryophyllene (14.5%), gamma-terpinene (12.4%), alpha-phellandrene (10.8%), p-cymene (9.8%) and thymol (6.8%) were the predominant compounds, whereas the main components of T. vulgaris oil were thymol (43.8%), p-cymene (15.2%), germacrene-D (11.7%), terpinolene (3.4%), carvacrol (3.2%), beta-caryophyllene (2.8%) and alpha-thujene (2.2%). In all three plants oil, hydrocarbon monoterpenes predominated over sesquiterpenes. Antioxidant activities were assessed by determining IC50 values in the DPPH radical scavenging assay. Antibacterial activity was determined by measuring minimum inhibitory concentration (MIC) using the broth dilution method. The essential oils of T. caucasicus, T. kotschyanus and T. vulgaris showed free radical scavenging and antibacterial activity.  相似文献   

3.
Essential oils obtained from flowers, leaves and stems of Origanum vulgare L. ssp. viride (Boiss.) Hayek., growing wild in Ardabil Province (north-west Iran), were analyzed by GC and GC/MS. beta-Caryophyllene was the major constituent in all three oils (48.1%, 50.1% and 60.2%, respectively). Of the 19 components detected in the flower oil, comprising 96.3% of the total, the major components were 1,8-cineole (11.6%), alpha-pinene (6.9%), and gamma-cadinene (4.8%). 1-Octen-3-ol (23.8%), and 1,8-cineole (8.5%) predominated in the leafoil. In the stem oil, other main constituents were bicyclogermacrene (9.8%), 1,8-cineole (6.4%), borneol (5.1%), and pinocarvone (4.4%). The essential oils were evaluated for their antibacterial activity against 10 selected microorganisms. The data obtained contribute to the future use of certain essential oils as natural preservatives for food products, due to their safety and positive effect on shelf life.  相似文献   

4.
Water-distilled essential oils from leaves of Hymenocrater yazdianus Rech.f., flowers of Stachys obtusicrena Boiss., and stems and flowers of Nepeta asterotricha Rech.f., which are endemic to Iran, were analyzed by GC and GC/MS. Fifty-five components of the leaf oil of H. yazdianus were characterized, representing 95.1% of the total components detected. The major constituents were identified as 1,8-cineole (17.6%), beta-caryophyllene (13.9%), alpha-pinene (10.6%) and caryophyllene oxide (10.4%). Germacrene-D (37.5%) and alpha-bisabolol (23.5%) were the main components among the twenty constituents characterized in the flower oil of S. obtusicrena, representing 90.8% of the total components detected. Thirty-five compounds representing 93.0% of the stem oil of N. asterotrica were identified among which terpinen-4-ol (22.8%) and gamma-terpinene (14.1%) were the major ones. The flower oil of the species was characterized by higher amounts of terpinen-4-ol (24.8%), 4a alpha, 7a beta-nepetalactone (18.2%) and 1,8-cineole (11.6%) among the thirty-three components comprising 98.5% of the total oil detected. The antibacterial activity of the stem, leaf and flower oils of Hymenocrater yazdianus, Stachys obtusicrena and Nepeta asterotricha against seven Gram-positive and Gram-negative bacteria were determined using the MIC method. The growth inhibitory zone (mm) was also measured.  相似文献   

5.
The essential oils of the fruits and the leaves of pistachio (Pistacia vera L.) were analyzed by GC and GC/MS. Fresh unripe pistachio fruits were richer in essential oil (0.5%, w/w) than the leaves (0.1%, w/w). Twenty one compounds were identified in the essential oil of the fruits and the major components were (+)-alpha-pinene (54.6%) and terpinolene (31.2%). The enantiomeric ratio of the major constituents of the essential oil of the fruits was determined using chiral GC/MS and it was found that the (+)/(-)-alpha-pinene ratio was 99.5:0.5, (+)/(-)-limonene 80:20, (+)/(-)-beta-pinene 96:4, and (+)/(-)-alpha-terpineol 0:100. Thirty three compounds were identified in the essential oil of the leaves and the major components were found to be alpha-pinene (30.0%), terpinolene (17.6%) and bornyl acetate (11.3%).  相似文献   

6.
The essential oil from the leaves of Carramboa littlei Aristeg. was isolated by hydrodistillation yielding 0.09%, w/v. The chemical composition was determined by GC-FID and GC-MS. Sixteen components were identified by comparison of their mass spectra with Wiley and NIST library data. The major constituents of the oil were germacrene-D (50.0%), bicyclogermacrene (4.8%) and ent-kaur-16-en-19-al (21.8%).  相似文献   

7.
The essential oils from Magnolia kwangsiensis Figlar & Noot. were obtained using hydrodistillation, and analysed by GC and GC–MS. A total of 31, 27 and 26 constituents were identified in the oils from male flower, female flower and leaf of M. kwangsiensis, and they comprised 99.2, 98.5 and 96.2% of the oils, respectively. Monoterpene hydrocarbons predominated in the oils and accounted for 48.3% of male flower oil, 54.0% of female flower oil and 44.6% of leaf oil. The compositions of flower oils were quite similar but with different content, and were different from those of leaf oil.  相似文献   

8.
The chemical compositions of the essential oils from the peel of ripe and unripe fruits of Hymenaea courbaril L., obtained by hydrodistillation, were analyzed by GC and GC-MS. The main constituents of the essential oil from the peel of the ripe fruits were the sesquiterpenes alpha-copaene (11.1%), spathulenol (10.1%) and beta-selinene (8.2%), while germacrene-D (31.9%), beta-caryophyllene (27.1%) and bicyclogermacrene (6.5%) were the major compounds in the oil from unripe fruits. The essential oils were tested against Aedes aegypti larvae and showed LC50 values of 14.8 +/- 0.4 microg/mL and 28.4 +/- 0.3 microg/mL for the ripe and unripe fruit peel oils, respectively. From the peel of the ripe fruits, the diterpenes zanzibaric acid and isoozic acid were isolated, along with the sesquiterpene caryolane-1,9beta-diol. To the best of our knowledge, this is the first report of this sesquiterpene in the genus. The structures of all compounds isolated were identified on the basis of their spectral data (IR, MS, 1D- and 2D-NMR) and by comparison with literature spectral data.  相似文献   

9.
Volatile components of essential oils from the leaves and stems of Croton jacobinensis, C. rhamnifolius, C. muscicapa and C. micans, which are medicinal plants found in the Caatinga biome of northeastern Brazil, were analyzed using GC and GC/MS. The acaricidal activity of these oils against Tetranychus urticae was evaluated using the fumigation method. Oil yields from the Croton species ranged from 1.1 +/- 0.0 to 0.6 +/- 0.0%, w/w, for leaves and 0.7 +/- 0.0 to 0.1 +/- 0.0% for stems. Sesquiterpenoids were dominant in all oils, except the stem oil from C. rhamnifolius, which exhibited a high monoterpene content, and the leaf and stem oils from C. muscicapa, which were rich in phenylpropanoids. The major volatile components of the leaf and stem oils from C. jacobinensis were (Z)-alpha-atlantone (24.3 +/- 0.4%) and trans-isolongifolanone (22.8 +/- 0.5%), respectively. The most abundant constituents detected in C. rhamnifolius were alpha-cedrene epoxide (23.3 +/- 0.1%) and caryophyllene oxide (21.9 +/- 0.0%) in the leaf oil, and camphor (16.6 +/- 0.5%) and tricyclene (12.8 +/- 0.1%) in the stem oil. Foenicolin was the main compound identified in the leaf (50.6 +/- 0.2%) and stem (72.7 +/- 0.6%) oils of C. muscicapa, while alpha-bulnesene (32.9 +/- 0.2%) and guaiol (17.9 +/- 0.7%) were the principal components of C. micans oils. These oils exhibited a high degree of toxicity in the fumigation assay. The stem oils from C. jacobinensis and C. rhamnifolius exhibited high lethality rates, with LC50 values of 0.3 and 0.2 microL/L of air after 24 h, respectively. The results suggest the potential use of stem essential oil, especially from C. rhamnifolius and C. jacobinensis, for the integrated control of Tetranychus urticae.  相似文献   

10.
The essential oil of the leaves and stems of Meum athamanticum Jacq., has been extracted by steam distillation and analysed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). The monoterpene fraction was predominant while the sesquiterpene one was practically absent. The principal constituents have been identified as (E)-beta-ocimene (29.6%), gamma-terpinene (17.9%), terpinolene (17.0%) and p-cymene (9.7%). Our results show that the chemical composition of the essential oil obtained of the leaves and stems of M. athamanticum from Spain is different to that obtained from plants of Germany, Italy and France.  相似文献   

11.
The chemical composition of the essential oil of the aerial parts of Teucrium polium ssp. capitatum collected during the flowering period from rocky places and dry pastures, (Serbia, Nis, Kamenica), and dunes along the sea-side, (Bulgaria, Burgas, Primorsko) has been studied by GC and GC/MS. The identified compounds, 45 for the oil from Serbia and 44 for that from Bulgaria, amounted to 97.3% and 96.4% of the oils, respectively. The dominant constituents of the Serbian oil were sesquiterpenes {59.6%, the most abundant components being germacrene D (31.8%), trans-caryophyllene (8.8%) and bicyclogermacrene (6.2%)}, while monoterpenes accounted for 37.5% {the most abundant components being linalool (14.0%) and beta-pinene (10.7%)}. The essential oil from Bulgaria was characterized by a high percentage of monoterpenes, amounting to 62.9% {the most abundant components being beta-pinene (26.8%), alpha-pinene (9.3%) and limonene (6.4%)}, while sesquiterpenes accounted for 33.5% (the most abundant component was germacrene D 17.7%)}.  相似文献   

12.
This study analyzed the hydrodistilled essential oils in the leaves and twigs of Litsea akoensis to determine composition and yield. Seventy-one and 40 compounds were identified in the leaf and twig oils, respectively. The main components of leaf oil were limonene (18.5%), thymol (10.1%), p-cymene (9.6%), beta-caryophyllene (8.9%), and carvacrol (8.2%). The main components of twig oil were beta-phellandrene (43.7%) and trans-beta-ocimene (10.4%). The results demonstrated that leaf oil had excellent antioxidant and antimicrobial activities, superior to those of twig oil.  相似文献   

13.
Different parts of Uvaria ovata (Dunals) A, U. anonoides Baker f. and U. tortilis A. Chev were collected from Ivory Coast, in Toumodi (center), Agboville (south-east) and Sikensi (south), respectively. The essential oils, obtained by hydrodistillation using a Clevenger-type apparatus, were investigated by CG and CG/MS. The proportion of the chromatographed constituents identified varied from 92.5% to 98.5%. For U. ovata, the root bark oil comprised mainly camphene (10.2%), beta-pinene (10.1%), epi-alpha-cadinol (13.2%) and intermedeol (9.7%), while the oil of the stem bark was dominated by epi-alpha-cadinol (27.3%), intermedeol (11.9%) and benzyl benzoate (13.4%). The oil of the leaves showed beta-caryophyllene (15.6%), germacrene D (24.2%) and benzyl benzoate (18.3%) as the most abundant constituents. The leaf oil of U. anonoides was rich in 2,5-dimethoxy-p-cymene (15.5%), bicyclogermacrene (21.3%) and benzyl benzoate (8.7%), while, gamma-terpinene (31.7%), beta-caryophyllene (23.9%) and germacrene D (15.8%) constituted the main components of the stem bark oil of U. tortilis.  相似文献   

14.
The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of the Tunisian Hypericum perforatum and H. ericoides ssp. roberti was elucidated by a combination of GC and GC-MS analyses. The main constituents of the oil of H. perforatum were alpha-pinene (11.8%), alpha-ylangene (10.4%), germacrene-D (9.5%), n-octane (6.5%) and alpha-selinene (5.9%). The oil of H. ericoides ssp. roberti exhibited a higher amount of aliphatic and branched hydrocarbons and the main constituents were n-octane (29.1%), alpha-pinene (10.9%), pulegone (7.7%) and acetophenone (7%). Both qualitative and quantitative differences were observed between the studied oils. This chemical variability seems likely to result from the genetic variability, since samples of both species were collected at the same location and processed under the same conditions.  相似文献   

15.
The essential oils from aerial parts and fruits of Anisosciadium orientale DC. growing wild in Iran were obtained by hydrodistillation and analyzed by GC and GC/MS. Seventy-one compounds were identified in the fruit oil and fifteen in the oil from the aerial parts. The main oil components of the fruits and aerial parts were myristicin (33.5%-33.7%), alpha-terpinolene (22%-25.8%) and limonene (19.5%-19.7%). Some compounds, such as geranyl butyrate and germacrene-D, were only detected in the fruit oil.  相似文献   

16.
The chemical composition of the essential oils of the flowers and leaves of Anthemis hyalina were analyzed by GC and GC-MS for the first time. The oils were found to contain seventy-two components. cis-Chrysanthenyl acetate (14.9% and 17.8%), camphor (11.6% and 1.7%), terpinen-4-ol (8.3% and 1.2%), germacrene-D (5.1% and 2.1%), β-caryophyllene (4.1% and 5.4%), myrcene (3.6% and 16.9%), bicyclogermacrene (3.5% and 0.9%), α-pinene (2.3% and 4.1%), cis-β-ocimene (2.1% and 4.3%) and isospathulenol (0.4% and 4.3%) were found to be the major constituents of the oils of flowers and leaves respectively. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 428–429, September–October, 2006.  相似文献   

17.
The leaf and root essential oil composition of Boenninghausenia albiflora Reichb and Meissner (family: Rutaceae), collected from Uttarakhand, India, was analysed by capillary gas chromatography and gas chromatography-mass spectrometry. The major constituents identified in the leaf essential oil were β-myrcene, (Z)-β-guaiene, (Z)-β-ocimene and β-caryophyllene, whereas bicyclogermacrene, α-terpinyl acetate, geijerene and β-copaene-4α-ol were identified as the major constituents of the root essential oil. This is the first time that the chemical compositions of leaf and root essential oils of B. albiflora have been investigated in detail. The results show significant qualitative and quantitative variations in leaf and root oil composition.  相似文献   

18.
The essential oils from the aerial parts of three rare Australian endemic species of Darwinia have been extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). In D. procera, myrtenyl acetate (6.1-29.6%), alpha-pinene (6.9-25.1%), gamma-terpinene (6.2-13.6%), bicyclogermacrene (5.5-10.8%) and (E)-nerolidol (3.4-9.7%) were the principal components detected. D. fascicularis ssp. fascicularis produced an oil in which (E)-nerolidol (33.0%), alpha-pinene (15.1%) and gamma-terpinene (10.2%) were the principal components. In D. peduncularis the major constituents were alpha-pinene (33.5%), gamma-terpinene (23.1%) and bicyclogermacrene (6.7%).  相似文献   

19.
The essential oils of four wild growing Origanum vulgare L. (family Lamiaceae) collected from different locations in Kumaon region (Uttarakhand, India) were analysed by capillary GC and GC/MS. The comparative results of O. vulgare L. collected from four different regions showed differences in the chemical constituents of the essential oils. The oil of O. vulgare L. collected from Dhoulchina and Champawat (chemotype I) shows p-cymene (6.7-9.8%), γ-terpinene (12.4-14.0%), thymol (29.7-35.1%) and carvacrol (12.4-20.9%) as major constituents while the oil from Kilbury and Rushi village (chemotype II) shows linalool (6.7-9.7%), bornyl acetate (12.6-16.8%), β-caryophyllene (10.5-13.8%) and germacrene D (6.3-11.3%) as the major constituents. These features highlight the chemosystematics of this genus.  相似文献   

20.
The leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum (Rutaceae) from Monteverde, Costa Rica have been obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The principal constituents of Z. rhoifolium leaf oil were germacrene D (14.6%), limonene (12.5%), trans-2-hexenal (11.3%), beta-elemene (9.2%), 2-undecanone (9.2%), myrcene (7.9%), bicyclogermacrene (7.5%), and germacrene A (5.2%). The leaf oil of Z. setulosum was composed largely of beta-phellandrene (37.5%), beta-caryophyllene (13.7%), alpha-pinene (11.9%), germacrene D (10.9%), myrcene (5.9%), and nerolidol (5.4%). The essential oils were screened for in-vitro cytotoxic activity against Hep G2, MCF-7, and PC-3 human tumor cell lines; antibacterial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli; and for Artemia salina (brine shrimp) lethality. Neither Z. rhoifolium nor Z. setulosum leaf oils exhibited cytotoxicity or antibacterial activity. Both oils showed activity against A. salina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号