首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构.由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷,本文也采用DFT+U(Hubbard系数)方法对模型的电子结构进行了计算.DFT的计算结果表明N掺杂后,N2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低,而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响.DFT+U的计算却给出截然不间的结果,N掺杂并没有导致带隙能的降低,而只是在带隙中引入一个孤立的杂质能级,反而F掺杂以及氧空位的引入带来明显的带隙能降低.DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

2.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构. 由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷, 本文也采用DFT+U(Hubbard 系数)方法对模型的电子结构进行了计算. DFT的计算结果表明N掺杂后, N 2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低, 而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响. DFT+U的计算却给出截然不同的结果, N掺杂并没有导致带隙能的降低, 而只是在带隙中引入一个孤立的杂质能级, 反而F掺杂以及氧空位的引入带来明显的带隙能降低. DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

3.
Theoretical study of N-doped TiO2 rutile crystals   总被引:1,自引:0,他引:1  
The N-doping effects on the electronic and optical properties of TiO2 rutile crystal have been studied using density functional theory (DFT). The calculations of several possible N-doped structures show that band gaps have little reduction but some N 2p states lie within the band gap in the substitutional N to O structure and interstitial N-doped rutile supercell, which results in the reduction of the photon-transition energy and absorption of visible light. In contrast, substitutional N to Ti doped model has a significant band-gap narrowing. The results maybe clarify confusions in nitrogen-doped TiO2 rutile crystal.  相似文献   

4.
Deep impurity states associated with a substitutional nitrogen at an oxygen site (N(O)) are believed to be the source of the visible-light absorption of nitrogen-doped titanium dioxide (TiO(2)). Our comprehensive study using density functional theory (DFT) plus onsite Coulomb interaction (U) reveals that a titanium atom at an interstitial site (Ti(i)) is highly mobile and strongly binds with N(O). Hybridizations of N p with Ti d states of Ti(i) give rise to a new band at the valence band edge, eliminating the hole-trapping centers originated from the deep N(O) states. The suggested mechanism explains the photocatalytic oxidation reactions as well as the visible-light absorption observed on N-doped anatase TiO(2).  相似文献   

5.
Plane-wave-based pseudopotential density functional theory (DFT) calculations are used to characterize the doping effect of S substituting for O in anatase TiO(2). Through band structure calculation, a direct band gap is predicted in TiO(2)(-)(x)S(x). Electronic structure analysis shows that the doping S could substantially lower the band gap of TiO(2) by the presence of an impurity state of S 3p on the upper edge of the valence band. Excitations from the impurity state of S 3p to the conduction band may be responsible for the red shift of the absorption edge observed in the S-doped TiO(2). The band gap lowering and red shift of the absorption edge are found to increase as the sulfur concentration increases.  相似文献   

6.
We have employed DFT calculations to carry out an accurate analysis of the effect of N- and NH-doping on the visible photocatalytic activity in the cubic In(2)O(3). In the substitutional N-doped In(2)O(3), the 2p impurity states of N induce a red shift in the optical absorption, while in the interstitial N-doping the red shift is dominantly caused by the localized π antibonding states of NO. When a H atom is accompanied by a N impurity in the lattice, the H atom acts as a charge donor and compensates the hole state created by N-doping, thus the energy level of the impurity states is reduced. As a result, the mixing of impurity states and the valence band is enhanced. At the same nitrogen dopant concentration, NH-codoping yields a larger band gap narrowing, especially for the interstitial NH-codoping. The theoretical calculations presented in this work explain well the previous experimental results of the enhanced visible photocatalytic activity in NH-codoped cubic In(2)O(3).  相似文献   

7.
Nitrogen boron co-doped TiO(2) prepared via sol-gel synthesis and active under visible light, contains two types of paramagnetic extrinsic defects, both exhibiting a well resolved EPR spectrum. The first center is the well characterized [N(i)O]˙ species (i = interstitial) also present in N-doped TiO(2), while the second one involves both N and B. This latter center (labeled [NOB]˙) exhibits well resolved EPR spectra obtained using either (14)N or (15)N which show a high spin density in a N 2p orbital. The structure of the [NOB]˙ species is different from that previously proposed in the literature and is actually based on the presence of interstitial N and B atoms both bound to the same lattice oxygen ion. The interstitial B is also linked to two other lattice oxygen ions reproducing the trigonal planar structure typical of boron compounds. The energy level of the [NOB]˙ center lies near the edge of the valence band of TiO(2) and, as such, does not contribute to the visible light absorption. However, [NOB]˙ can easily trap one electron generating the [NOB](-) diamagnetic center which introduces a gap state at about 0.4 eV above the top of the valence band. This latter species can contribute to the visible light activity.  相似文献   

8.
The electronic properties of N-doped rutile TiO2(110) have been investigated using synchrotron-based photoemission and density-functional calculations. The doping via N2+ ion bombardment leads to the implantation of N atoms (approximately 5% saturation concentration) that coexist with O vacancies. Ti 2p core level spectra show the formation of Ti3+ and a second partially reduced Ti species with oxidation states between +4 and +3. The valence region of the TiO(2-x)N(y)(110) systems exhibits a broad peak for Ti3+ near the Fermi level and N-induced features above the O 2p valence band that shift the edge up by approximately 0.5 eV. The magnitude of this shift is consistent with the "redshift" observed in the ultraviolet spectrum of N-doped TiO2. The experimental and theoretical results show the existence of attractive interactions between the dopant and O vacancies. First, the presence of N embedded in the surface layer reduces the formation energy of O vacancies. Second, the existence of O vacancies stabilizes the N impurities with respect to N2(g) formation. When oxygen vacancies and N impurities are together there is an electron transfer from the higher energy 3d band of Ti3+ to the lower energy 2p band of the N(2-) impurities.  相似文献   

9.
The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.  相似文献   

10.
N-doped TiO(2) has for many years received interest as visible light photocatalytic materials. Here we give our perspective on the subject with special consideration towards the use of visible light photocatalysts in the field of antimicrobial materials with applications in healthcare environments. The subject is reviewed and critiqued from synthetic techniques to characterisation and assessment of functional properties. N-doped TiO(2) has huge potential to form commercially viable antimicrobial surfaces that are easily implemented within the healthcare environment. We aim to shed light on the illusive nature of the mechanism of the different types of N-doping and comment on how these affect the properties of the catalysts themselves. Small concentrations of nitrogen doped under mild conditions lead to interstitial doping, which also promotes the creation of oxygen vacancies. Many believe that it is these oxygen vacancies that actually promote the formation of visible light photocatalysis and hence there is an indirect correlation between the interstitial doping and the photocatalysis. As the concentration of interstitial nitrogen increases the oxygen vacancies increase, however the presence of oxygen vacancies in turn encourages substitutional doping which then fills the oxygen vacancies. This cyclic relationship leads to photocatalysts that are very sensitive to changing nitrogen concentration.  相似文献   

11.
A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.  相似文献   

12.
LIU Gang  LI De-Hua  ZHANG Ru 《结构化学》2011,30(8):1115-1121
The systematic trends and effect introduced by Zr and C co-doping to TiO2 of electronic structure and optical properties of anatase TiO2 have been calculated by the plane-wave ultra-soft pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for the exchange-correlation potential. Through the current calculations, the density of states (DOS), energy band structure and optical absorption coefficients have been obtained for TiO2 and compared with the doped TiO2, and the influence of electronic structure and optical properties caused by Zr and C co-doping has been presented qualitatively together. The results revealed that the energy band gap has been decreased owing to the doped Zr and C, whereas the optical absorption coefficients have been increased in the region of 400~800 nm and a red shift of absorption band can be found. Accordingly, photo catalytic activity of TiO2 has been enhanced. The current calculations are in good agreement with the experimental data.  相似文献   

13.
N掺杂TiO_2光催化剂的微结构与吸光特性研究   总被引:1,自引:0,他引:1  
以紫外可见漫反射光谱(UV-VIS-DRS)和X射线光电子能谱(XPS)分析和研究了四种方法制备的N掺杂TiO2光催化剂的结构,即水解法(N/TiO2-H)、氨热还原法(N/TiO2-A)、机械化学法(N/TiO2-M)和尿素热处理法(N/TiO2-T)等.结果表明,N/TiO2-H和N/TiO2-T两种催化剂在490 nm处有吸收带边,可见光激发途径是掺杂的N以填隙方式形成的杂质能级吸收电子发生的跃迁引起的;而N/TiO2-A和N/TiO2-M两种催化剂在整个可见光区域内具有可见光吸收,其对可见光的激发途径是掺杂N和氧空缺共同作用的结果.理论计算的N杂质能级位于价带上0.75 eV,与实验观察到的吸收带边结果十分吻合.XPS结果表明,几种催化剂的N1 s结合能位置都在399 eV附近,显示为填隙掺杂的N原子.填隙掺杂的N/TiO2,其Ti原子的2p结合能与未掺杂的TiO2相比增加了+0.3-+0.6 eV,而O1s电子的结合能增加了+0.2-+0.5eV,这是因为填隙的N原子夺取Ti和O的电子,Ti和O原子周围的电子密度降低了.电子能谱和吸光特性的研究都表明,掺杂的机理是在TiO2晶格内形成N原子的填隙.  相似文献   

14.
Nitrogen doped TiO2 represents one of the most promising material for photocatalitic degradation of environmental pollutants with visible light. However, at present, a great deal of activity is devoted to the anatase polymorph while few data about rutile are available. In the present paper we report an experimental characterization of N doped polycrystalline rutile TiO2 prepared via sol-gel synthesis. Nitrogen doping does not affect the valence band to conduction band separation but, generates intra band gap localized states which are responsible of the on set of visible light absorption. The intra band gap states correspond to a nitrogen containing defect similar but not coincident with that recently reported for N doped anatase.  相似文献   

15.
Ultraviolet light-induced electron-hole pair excitations in anatase TiO(2) powders were studied by a combination of electron paramagnetic resonance and infrared spectroscopy measurements. During continuous UV irradiation in the mW.cm(-2) range, photogenerated electrons are either trapped at localized sites, giving paramagnetic Ti(3+) centers, or remain in the conduction band as EPR silent species which may be observed by their IR absorption. Using low temperatures (90 K) to reduce the rate of the electron-hole recombination processes, trapped electrons and conduction band electrons exhibit lifetimes of hours. The EPR-detected holes produced by photoexcitation are O(-) species, produced from lattice O(2-) ions. It is found that under high vacuum conditions, the major fraction of photoexcited electrons remains in the conduction band. At 298 K, all stable hole and electron states are lost from TiO(2). Defect sites produced by oxygen removal during annealing of anatase TiO(2) are found to produce a Ti(3+) EPR spectrum identical to that of trapped electrons, which originate from photoexcitation of oxidized TiO(2). Efficient electron scavenging by adsorbed O(2) at 140 K is found to produce two long-lived O(2)(-) surface species associated with different cation surface sites. Reduced TiO(2), produced by annealing in vacuum, has been shown to be less efficient in hole trapping than oxidized TiO(2).  相似文献   

16.
用密度泛函方法优化了锐钛矿二氧化钛及其磷掺杂锐钛矿二氧化钛的晶体结构.研究揭示了用超胞模型研究未掺杂和P掺杂锐钛矿TiO2能带结构和态密度的可行性.计算结果对于提高TiO2光催化活性有意义.  相似文献   

17.
First principles calculations were performed on the electronic, vibrational and Raman spectra of substitutional N-, B- and Pt-doped rutile titanium dioxide (TiO2), within the density functional theory (DFT), using the plane-wave pseudopotential method. From the calculated electronic band structure and density of states we concluded that the doping induces significant changes in the band structure of TiO2, highlighting B- and Pt-doped TiO2 as the best candidates for photocatalytic materials for visible light absorption. On the other hand, N-doped TiO2 appears to be active only for the photoreduction processes, although N doping introduces midstates into the band gap. Only N-doped TiO2 proved to have stable phonon dispersions and showed interesting band doubling.  相似文献   

18.
TiO2 doped with transition metals shows improved photocatalytic efficiency. Herein the electronic and optical properties of Mo‐doped TiO2 with defects are investigated by DFT calculations. For both rutile and anatase phases of TiO2, the bandgap decreases continuously with increasing Mo doping level. The 4d electrons of Mo introduce localized states into the forbidden band of TiO2, and this shifts the absorption edge into the visible‐light region and enhances the photocatalytic activity. Since defects are universally distributed in TiO2 or doped TiO2, the effect of oxygen deficiency due to oxygen vacancies or interstitial Mo atoms is systemically studied. Oxygen vacancies associated with the Mo dopant atoms or interstitial Mo will reduce the spin polarization and magnetic moment of Mo‐doped TiO2. Moreover, oxygen deficiency has a negative impact on the improved photocatalytic activity of Mo‐doped TiO2. The current results indicate that substitutional Mo, interstitial Mo, and oxygen vacancy have different impacts on the electronic/optical properties of TiO2 and are suited to different applications.  相似文献   

19.
The substitution/adsorption structures of Co on an anatase TiO2 (001)-(1×4) surface are investigated using the DFT/local density approximation (LDA) method.Theoretical calculation shows that the Co ion prefers to be adsorbed on the surface of anatase TiO2.The density of states (DOS) analysis finds that the Co 3d is located mainly in the energy gap region.The Co 3d partial density of states (PDOS) indicates that there is a substantial degree of hybridization between O 2s and Co 3d in valence band (VB) regions in the substitution models.The conclusion is that the mode of substitution is more active when the catalyst is a higher-energy surface.  相似文献   

20.
The interaction between implanted La, substitutional N, and an oxygen vacancy at TiO(2) anatase (101) surface has been investigated by means of first-principles density function theory calculations to investigate the origin of enhanced visible-light photocatalytic activity of La/N-codoped anatase observed in experiments. Our calculations suggest that both the adsorptive and substitutional La-doped TiO(2) anatase (101) surfaces are probably defective configurations in experiments. The h-Cave-adsorbed La doping decreases the formation energy for the substitutional N implantation and vice versa, while the charge compensation effects do not take effect between the adsorptive La and substitutional N dopants, resulting in some partially occupied states in the band gap acting as traps of the photoexcited electrons. The Ti(5c)-substituted La doping decreases the energy required for the substitutional N implantation, and the substitutional La and N codoping promotes the formation of an oxygen vacancy, which migrates from the O(sb-3c) site at the inner layer toward the surface O(b) site. For the substitutional La/N-codoped (Ti(5c)_O(3c-down)) surface, the charge compensation between the substitutional La and substitutional N leads to the formation of two isolated occupied N(s)-O π* impurity levels in the gap, while the excitation energy from the higher impurity level to the CBM decreases by about 0.89 eV. After further considering an oxygen vacancy on the Ti(5c)_O(3c-down) surface, the two electrons on the double donor levels (O(b) vacancy) passivate the same amount of holes on the acceptor levels (substitutional La and N), forming the acceptor-donor-acceptor compensation pair, which provides a reasonable mechanism for the enhanced visible-light photocatalytic activity of La/N codoped TiO(2) anatase. This knowledge may aid the further design and construction of new effective visible-light photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号