首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combinatorial solution-phase cycloadditions of (1Z,4R*,5R*)-4-benzoylamino-5-phenylpyrazolidin-3-on-1-azomethine imines 3 to beta-keto esters 4 afforded a library of 26 bicyclic pyrazolidinones 5 in 6-89% yields and in 14-100% de. All products were isolated in >90% purity according to 1H NMR, and 25 of them were analytically pure. The structures of cycloadducts were confirmed by NMR and X-ray diffraction. Most of the products were isolated as mixtures of the major (1S*,2S*,3R*,5R*,6R*)-epimers 5 and the minor (1R*,2S*,3R*,5R*,6R*)-epimers 6. Epimerization of cycloadducts 5/6 at the anomeric position 1 in solution was confirmed by 1H NMR.  相似文献   

2.
The use of samarium diiodide as a source of iodides is reported. Thus, 2-hydroxy-3-iodoamides were obtained, with total regioselectivity, by treatment of 2,3-epoxyamides, in which the oxirane ring is 2,3-disubstituted or 2,2,3-trisubstituted, with SmI2. The ring-opening reaction was diastereospecific and (2R*,3R*)- or (2R*,3S*)-2-hydroxy-3-iodoamides were obtained from cis- or trans-epoxyamides, respectively. The relative configuration of 2-hydroxy-3-iodoamides was established by X-ray analysis. A mechanism to explain this transformation has been proposed. The starting compounds 1 are easily prepared by the reaction of enolates derived from 2-chloroamides with aldehydes at -78 degrees C.  相似文献   

3.
The 4,6-dideoxyfuranoses 10a and 10b have been synthesized by starting from the readily available E-5-dimethylphenylsilyl-2-hexene-4-ol (1) and employing successively three versatile oxyfunctionalization methods, namely photooxygenation, metal-catalyzed epoxidation, and oxidative desilylation. Photooxygenation of the hydroxy vinylsilane 1 and subsequent triphenylphosphine reduction of the hydroperoxides 3 afford the like-4a and unlike-4b diols, which have been converted separately to the tetrahydrofurans (2S*,3R*,5R*)-7a and (2S*,3R*,5S*)-7b by a combination of diastereoselective epoxidation and regioselective intramolecular epoxide-ring opening. In the epoxidation reaction, catalyzed by Ti(OiPr)(4) or VO(acac)(2), only one diastereomer (dr >95:5) of the epoxide 5 is obtained. Further intramolecular opening of the epoxide ring in erythro-5 occurs regioselectively at the C-alpha position and diastereoselectively under inversion of the configuration of the silyl-substituted stereogenic center to generate only one diastereomer of the tetrasubstituted tetrahydrofurans 7. Oxidative desilylation of the latter gave the hitherto unknown 4,6-dideoxyfuranoses 10a and 10b. The use of the optically active E-5-dimethylphenylsilyl-2-hexene-4-ol (1) as starting material, which is readily available through lipase-catalyzed kinetic resolution, leads to the D- and L-4,6-dideoxysorbofuranoses 10a and D- and L-4,6-dideoxyfructofuranoses 10b in up to 98% enantiomeric excess.  相似文献   

4.
Diastereomeric meso- and d,l-bis(bicyclopropylidenyl) (5) were obtained upon oxidation with oxygen of a higher-order cuprate generated from lithiobicyclopropylidene (4) in 50 and 31 % yield, respectively. Their perdeuterated analogues meso-[D(14)]- and d,l-[D(14)]-5 were obtained along the same route from perdeuterated bicyclopropylidene [D(8)]-3 (synthesized in six steps in 7.4 % overall yield from [D(8)]-THF) in 20.5 % yield each. Dehalogenative coupling of 1,1-dibromo-2-cyclopropylcyclopropane (6) gave a mixture of all possible stereoisomers of 1,5-dicyclopropylbicyclopropylidene 16 in 69 % yield, from which (Z)-cis-16 was separated by preparative gas chromatography (26 % yield). The crystal structure of meso-5 looks like a superposition of the crystal structures of two outer bicyclopropylidene units (3) and one inner s-trans-bicyclopropyl unit, whereas the two outer cyclopropyl moieties adopt a gauche orientation with respect to the cyclopropane rings at the inner bicyclopropylidene units in (Z)-cis-16. Birch reduction with lithium in liquid ammonia of meso-5 and d,l-5 gave two pairs of diastereomeric quatercyclopropanes trans,trans-(R*,S*,R*, S*)-17/cis,trans-(R*,S*,R*,R*)-18 and trans,trans-(R*,S*,S*,R*)-19/cis,trans-(R*,S*,S*,S*)-20 in 97 and 76 % yield, respectively, in a ratio 9:1 for every pair. The latter diastereomer was also obtained as the sole product by Birch reduction of (Z)-cis-16 in 96 % yield. Under the same conditions, tetradecadeuterio analogues trans,trans-[D(14)]-(R*,S*,R*,S*)-17/cis,trans-[D(14)]-(R*, S*,R*,R*)-18 (8:1) and trans,trans-[D(14)]-(R*,S*,S*,R*)-19/cis,trans-[D(14)]-(R*,S*,S*,S*)-20 (12:1) were prepared from meso-[D(14)]-5 and d,l-[D(14)]-5 in 37 and 63 % yield, respectively. Reduction of meso-5 with diimine gave the cis,cis-quatercyclopropane (S*,S*,R*,R*)-21 as the main product (58 % yield) along with the cis,trans-diastereomer (S*,S*,R*,S*)-18 (29 % yield). Thus, five of the six possible diastereomeric quatercyclopropanes were obtained from meso-5, d,l-5, and (Z)-cis-16. The X-ray crystal structure analyses of trans,trans-(R*,S*,R*,S*)-17 and cis,cis-(S*,S*,R*,R*)-21 revealed for the both an unusual conformation in which the central bicyclopropyl unit adopts an s-trans-(antiperiplanar) orientation with phi=180.0 degrees , and the two terminal bicyclopropyl moieties adopt a synclinal conformation with phi=49.8 and 72.0 degrees , respectively. In solution the vicinal coupling constants (3)J(H,H) in trans,trans-(R*,S*,R*,S*)-[D(14)]-17, trans,trans-(R*,S*,S*,R*)-[D(14)]-19, trans,cis-(R*,S*,R*,R*)-[D(14)]-18 and trans,cis-(R*,S*,S*,S*)-[D(14)]-20 were found to be 4.1, 4.7, 5.9 and 5.9 Hz, respectively. This indicates a predominance of the all-gauche conformer in (R*,S*,R*,S*)-17 and a decreasing fraction of it in this sequence of the other diastereomers.  相似文献   

5.
Biological evaluations of bicyclo[6.4.0]dodecenone derivatives on antimalarial activity in vitro against Plasmodium falciparum and cytotoxicity against human KB cells were made. (+/-)-(1R*,4S*,7R*,8S*)-4-tert-Butyl-dimethylsiloxy-5,5-dimethyl-1-methyl-9-methylene-7-phenylsulfonylbicyclo[6.4.0]dodec-2,11-dien-10-one (15) exhibited potent antimalarial activity, whereas (+/-)-(1R*,7R*,8S*)-1-methyl-9-methylene-7-phenylsulfonylbicyclo[6.4.0]dodec-2,11-dien-10-one (14) showed significant cytotoxic activity in human KB cells. Both 14 and 15 possess, as a structural character, the exo-methylene moiety in their 6-membered ring of the 8-6 fused ring system.  相似文献   

6.
The first total synthesis of (+/-)-nor-1,6-germacradien-5-ols is described. The synthetic route involves the RCM methodology for the ring formation and a selective 1,2 addition of MeLi to cyclodecenone. By altering the order of the last synthetic steps, TBSO-protected (+/-)-(1Z,6E)-nor-1,6-germacradien-5-ols (+/-)-(5S*,8R*)-16 and -(+/-)-(5S*,8S*)-16 were obtained. The synthetic strategy via cyclodecenone offers the possibility of preparing different analogues of the title compounds through addition of other nucleophiles. Moreover, nor-germacrene D could be accessed from the target molecule by methylenation of its carbonyl moiety. (+/-)-nor-1,6-Germacradien-5-ol [(+/-)-(1E,5S*,6E,8S*)-2] was synthesized in eight steps from isovaleric acid. The 10-membered ring was formed by RCM, and the tertiary alcohol moiety was introduced in the last step via a highly diastereoselective addition of MeLi to (+/-)-(1E,6E)-1,6-cyclodecen-5-one (+/-)-E,E-5. Addition of MeLi to cyclodecenone (+/-)-Z,E-5 also occurred with complete selectivity to provide (+/-)-(1Z,5S*,6E,8S*)-2. A slightly different synthetic pathway was also explored, in which the order of the final synthetic steps was switched: the enone formation and the addition of MeLi were conducted prior to the cyclization. When the hydroxy group was protected as a TBS ether, the newly formed olefin had exclusively Z configuration. Thus, TBSO-protected (+/-)-(1Z,6E)-nor-1,6-germacradien-5-ols (+/-)-16 were obtained as a 1:1 (5S*,8S*)/(5R*,8S*) mixture. The NMR spectra of these two diastereomers confirmed the relative stereochemistry of natural (-)-1,6-germacradien-5-ol (1) at C5 and C8.  相似文献   

7.
Oxidation of trans-3,5-di-tert-butyl-3,5-diphenyl-1,2,4-trithiolane with dimethyldioxirane (DMD) or m-chloroperbenzoic acid (MCPBA) gave two stereoisomeric (1S*,3S*,5S*)- and (1R*,3S*,5S*)-1-oxides (16 and 17, respectively). Oxidation of 16 with DMD gave the (1S*,2R*,3S*,5S*)-1,2-dioxide (18) and the 1,1-dioxide 19, and that of 17 yielded the (1R*,2R*,3S*,5S*)-1,2-dioxide (20) mainly along with 18 and 19. The structures of the 1,2-dioxides 18 and 20 were determined by X-ray crystallography. 1,2-Dioxides 18 and 20 isomerized to each other in solution, and the equilibrium constant K (20/18) is 19 in CDCl(3) at 295 K. The kinetic study suggested a biradical mechanism for the isomerization. Isomerization of 16 and 17 to cis-3,5-di-tert-butyl-1,2,4-trithiolane 1-oxides by treatment with Me(3)O(+)BF(4)(-) is also described.  相似文献   

8.
Abstract

Conformational behaviour of about 30 2-methoxy-2-oxo-1,2- oxaphospho l an-3-0 1 s containing various substituents was examined by 1H and 13C NMR. Vicinal coupling constants J(HCCH), J(HCCP), J(HCOP), J(CCOP) and J(CCCP) were employed in this study. Conformation of the 1,2-oxaphospholane ring is governed almost exclusively by substituents at C-3, C-4 and C-5, as we l l as by their orientation. The configuration of the P atom has little or no influence on conformation of the ring in diastsreomeric pairs. Strong preference of phenyl, methyl and substituted methyl groups to occupy the equatorial or pseudoequatoria l positions was observed for all but one compounds studied. In the cis-fused bicyclic syst ems conformat ionally rigid 6-membered rings forced the 1,2-oxaphospholane rings to adopt an enve l ope-l ike (E4) conformation. No influence of the p=o……HO-C-3 hydrogen bond on conformation of the 1,2-oxaphospholane ring was found. Preferred conformations for (2R, 3R, 4R)-3-(hydroxymethyI)-2-methoxy-2-oxo-1,2-oxaphospho lane-3,4-diol and its triacetate are shown below.  相似文献   

9.
A pair of epimers of highly-oxygenated monoterpenes were isolated from the traditional Chinese medicine Eupatorium fortunei. Their structures were elucidated on the basis of the spectral analysis as (1R*, 2S*, 3R*, 4R*, 6S*)-1, 2, 3, 6-tetrehydroxy-p-menthane (1) and (1S*, 2S*, 3S*, 4R*, 6R*)-1, 2, 3, 6-tetrehydroxy-p-menthane (2).  相似文献   

10.
An intramolecular hydroxy epoxide opening was used to access the cyclopenta[b]benzofuran ring system of the natural product rocaglaol (2). Our route allowed the stereocontrolled preparation of the rocaglaol derivative (+/-)-(1S*,3S*,3aR*,8bS*)-3b. The synthesis of the (+/-)-(3R*)-epimer of 3b was also achieved. Our strategy is well-suited for the production of analogues with variation of the western ring. [reaction: see text]  相似文献   

11.
The N-phenethyl analogues of (1R*,4aR*,9aS*)-2-phenethyl-1,3,4,9a-tetrahydro-2H-1,4a-propanobenzofuro[2,3-c]pyridin-6-ol and 8-ol and (1R*,4aR*,9aR*)-2-phenethyl-1,3,4,9a-tetrahydro-2H-1,4a-propanobenzofuro[2.3-c]pyridin-6-ol and 8-ol, the ortho- (43) and para-hydroxy e- (20), and f-oxide-bridged 5-phenylmorphans (53 and 26) were prepared in racemic and enantiomerically pure forms from a common precursor, the quaternary salt 12. Optical resolutions were accomplished by salt formation with suitable enantiomerically pure chiral acids or by preparative HPLC on a chiral support. The N-phenethyl (-)- para-e enantiomer (1S,4aS,9aR-(-)-20) was found to be a mu-opioid agonist with morphine-like antinociceptive activity in a mouse assay. In contrast, the N-phenethyl (-)-ortho-f enantiomer (1R,4aR,9aR-(-)-53) had good affinity for the mu-opioid receptor (K(i) = 7 nM) and was found to be a mu-antagonist both in the [(35)S]GTP-gamma-S assay and in vivo. The molecular structures of these rigid enantiomers were energy minimized with density functional theory at the level B3LYP/6-31G* level, and then overlaid on a known potent mu-agonist. This superposition study suggests that the agonist activity of the oxide-bridged 5-phenylmorphans can be attributed to formation of a seven membered ring that is hypothesized to facilitate a proton transfer from the protonated nitrogen to a proton acceptor in the mu-opioid receptor.  相似文献   

12.
As part of a comprehensive investigation of electronic effects on the stereochemistry of base-catalyzed 1,2-elimination reactions, we observed a new syn intramolecular pathway in the elimination of acetic acid from beta-acetoxy esters and thioesters. 1H and 2H NMR investigation of reactions using stereospecifically labeled tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanoate (1) and its (2R*,3S*) diastereomer (2) shows that 23 +/- 2% syn elimination occurs. The elimination reactions were catalyzed with KOH or (CH3)4NOH in ethanol/water under rigorously non-ion-pairing conditions. By contrast, the more sterically hindered beta-trimethylacetoxy ester produces only 6 +/- 1% syn elimination. These data strongly support an intramolecular (Ei) syn path for elimination of acetic acid, most likely through the oxyanion produced by nucleophilic attack at the carbonyl carbon of the beta-acetoxy group. The analogous thioesters, S-tert-butyl (2R*,3R*)-3-acetoxy-2,3-2H2-butanethioate (3) and its (2R*,3S*) diastereomer (4), showed 18 +/- 2% syn elimination, whereas the beta-trimethylacetoxy substrate gave 5 +/- 1% syn elimination. The more acidic thioester substrates do not produce an increased amount of syn stereoselectivity even though their elimination reactions are at the E1cb interface.  相似文献   

13.
[reaction: see text] Lipase-catalyzed resolution of (2R*,3S*)-3-methyl-3-phenyl-2-aziridinemethanol, (+/-)-2, at low temperatures gave synthetically useful (2R,3S)-2 and its acetate (2S,3R)-2a with (2S)-selectivity (E = 55 at -40 degrees C), while a similar reaction of (2R*,3R*)-3-methyl-3-phenyl-2-aziridinemethanol, (+/-)-3, gave (2S,3S)-3 and its acetate (2R,3R)-3a with (2R)-selectivity (E = 73 at -20 degrees C). Compound (+/-)-2 was prepared conveniently via diastereoselective addition of MeMgBr to tert-butyl 3-phenyl-2H-azirine-2-carboxylate, (+/-)-1a, which was successfully prepared by the Neber reaction of oxime tosylate of tert-butyl benzoyl acetate 7a. The tert-butyl ester was requisite to promote this reaction. For determination of the absolute configuration of (2S,3R)-2a, enantiopure (2S,3R)-2 was independently prepared in three steps involving diastereoselective methylation of 3-phenyl-2H-azirine-2-methanol, (S)-10, with MeMgBr. The absolute configuration of (2S,3S)-3 was determined by X-ray analysis of the corresponding N-(S)-2-(6-methoxy-2-naphthyl)propanoyl derivative (S,S,S)-13.  相似文献   

14.
Three chiral diamines were synthesised and evaluated as sparteine surrogates in the lithiation-substitution of N-(tert-butoxycarbonyl)pyrrolidine. The synthesis and attempted resolution of sparteine-like diamines [(1S*,2R*,8R*)-10-methyl-6,10-diazatricyclo[6.3.1.0(2,6)]dodecane and (1S*,2R*,9R*)-11-methyl-7,11-diazatricyclo[7.3.1.0(2,7)]tridecane] (via inclusion complex formation) are reported. Unfortunately, it was only possible to resolve the diazatricyclo[7.3.1.0(2,7)]tridecane compound. An alternative route to (1R,2S,9S)-11-methyl-7,11-diazatricyclo[7.3.1.0(2,7)]tridecane starting from the natural product, (-)-cytisine, is described. This simple three-step route furnished gram-quantities of a (+)-sparteine surrogate. X-Ray crystallography of an intermediate in the route, (1R,5S,12S)-3-methoxycarbonyldecahydro-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one, enabled the stereochemistry of all of the tricyclic diamines described in this paper to be unequivocally established. Two other diamines, starting from (S)-proline and resolved 2-piperidine ethanol, were prepared using standard methods. These diamines lacked the bispidine framework of (-)-sparteine and were found to impart vastly inferior enantioselectivity. It was concluded that, for the asymmetric lithiation substitution of N-Boc pyrrolidine, a rigid bispidine framework and only three of the four rings of (-)-sparteine are needed for high enantioselectivity. Furthermore, it is shown that diamine (1R,2S,9S)-11-methyl-7,11-diazatricyclo[7.3.1.0(2,7)]tridecane is the first successful (+)-sparteine surrogate.  相似文献   

15.
Synthesis of (1R,5R,6R)-2-(6-hydroxymethyl-5-isopropyl-2-methylcyclohex-2-enyl)-N- methoxy-N-methylacetamide 8 from R-(-)-phellandrene in six steps, and (3aR*,4S*,6R*,6aS*)- (6-hydroxymethyl-4-methoxy-2,2,6-trimethyltetrahydrofuro[3,4-d][1,3]dioxol- 4-yl)acetic acid methyl ester 17 from tetrabromoacetone and 2-methoxy-5-methylfuran in six steps, provided two key fragments which have been combined to produce intermediates for attempted construction of the basic skeleton of eleutherobin.  相似文献   

16.
We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 ? in the singlet ground state and 2.568 ? in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.  相似文献   

17.
A series of polyketide-originated metabolites (1-5) were isolated from a marine sponge-derived fungus Mycelia sterilia. Of these, 1-3 were new compounds. Their structures were elucidated by spectroscopic methods as (4R*, 5S*, 6S*, 8S*, 13R*)-1-(2,8-dihydroxy-1,2,6-trimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1-yl)-3-methoxy-propan-1-one (1), 4,8-dihydroxy-7-(2-hydroxy-ethyl)-6-methoxy-3,4-dihydro-2H-naphthalen-1-one (2) and 1-methyl-naphthalene-2,6-dicarboxylic acid (3). In 1, the proton-proton long-range coupling phenomenon claimed attention and was discussed.  相似文献   

18.
A new strategy in asymmetric synthesis is described in which the desymmetrisation of a C(2h)-symmetric molecule is followed by a subsequent enantioselective 'proof-reading' step. The double asymmetric ring-opening of the bis-epoxide (1R*,3R*,5S*,7S*)-4,8-dioxa-tricyclo[5.1.0.0(3,5)]octane with azidotrimethylsilane, catalysed by a chiral chromium Salen catalyst, was studied. The reaction involves the initial asymmetric ring-opening of the bis-epoxide to give the intermediate in moderate enantiomeric excess (ca. 50% ee); the second ring-opening step yields the required diazido diol, (1S,3S,4S,6S)-4,6-diazidocyclohexane-1,3-diol, in 72% yield and 70% ee. The origin of proof reading stems from the diversion of the minor enantiomer of the intermediate to a centrosymmetric by-product, a process which improves the enantiomeric excess of the required product. Using alternative conditions, the reaction was optimised to yield the required product in >98% ee.  相似文献   

19.
As part of a comprehensive investigation on the stereochemical aspects of base-catalyzed 1,2-elimination reactions, we have studied a set of acyclic carbonyl substrates that react by an irreversible E1cB mechanism with largely anti stereospecificity. (2)H NMR data show that these reactions using KOH in EtOH/H(2)O under non-ion-pairing conditions produce a minimum of 85-89% anti elimination on stereospecifically labeled tert-butyl (2R*,3R*)- and (2R*,3S*)-3-(3-trifluoromethylphenoxy)-2,3-(2)H(2)-butanoate, S-tert-butyl (2R*,3R*)- and (2R*,3S*)-3-(3-trifluoromethylphenoxy)-2,3-(2)H(2)-butanethioate, and the related ketones, (4R*,5R*)- and (4R*,5S*)-5-(3-trifluoromethylphenoxy)-4,5-(2)H(2)-3-hexanone. With both diastereomers of each substrate available, the KIEs can be calculated and the innate stereoselectivities determined. The elimination reactions of the β-3-trifluoromethylphenoxy substrates occur by E1cB mechanisms with diffusionally equilibrated enolate-anion intermediates. Thus, it is clear that anti elimination does not depend solely upon concerted E2 mechanisms. Negative hyperconjugation provides a satisfactory explanation for the anti stereospecificity exhibited by our carbonyl substrates, where the leaving group activates the anti proton, leading to the enolate intermediate. The activation of the anti proton by negative hyperconjugation may also play a role in the concerted pathways of E2 mechanisms. We have also measured the rates of the hydroxide-catalyzed elimination reactions of butanoate, thiobutanoate, and ketone substrates in EtOH/H(2)O, with β-tosyloxy, acetoxy, and 3-trifluoromethylphenoxy nucleofuges.  相似文献   

20.
前文~[1,2]曾从豆荚属软珊瑚中分离出两种大环二萜内酯,最近又在喀里多豆荚软珊瑚(Lobophytum caledonense Tix Dur)中分离出一种罕见的新型结构的次生代谢产物豆荚软珊瑚酮Lobocalone(1)].本文报道了1的结构测定结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号