首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
We construct the unique two-dimensional (2D) kinematics which is work-conjugate to the exact, resultant local equilibrium conditions of the non-linear theory of branching shells. It is shown that the compatible shell displacements consist of the translation vector and rotation tensor fields defined on the regular parts of the shell base surface as well as independently on the singular surface curve modelling the shell branching. Discussing relations between limits of the translation vector and rotation tensor fields when approaching the singular curve, and analogous fields given only along the singular curve itself, several types of the junctions are described. Among them are the stiff, entirely simply connected and partly simply supported junction as well as the elastically and dissipatively deformable junction, and the non-local elastic junction. For each type of junction the explicit form of the principle of virtual work is derived.  相似文献   

2.
3.
4.
This paper presents the extension of a two-dimensional model that, recently appeared in literature, deals with freely vibrating laminated plates. The extension takes into account the corresponding theory describing the dynamic of freely vibrating multilayered doubly curved shells. The relevant governing differential equations, associated boundary conditions and constitutive equations are derived from one of Reissner’s mixed variational theorems. Both the governing differential equations and the related boundary conditions are presented in terms of resultant stresses and displacements. In spite of the multi-layer nature of the shell, the theory is developed as if the shell were virtually made of a single layer. This choice does not limit the performances of the model, which are comparable to the corresponding three-dimensional theory. This ability is accomplished by an appropriate global expansion of the relevant kinetic and stress quantities, through the thickness of the multilayered shell. The mentioned expansion is realized by a novel selection of global piecewise-smooth functions. Numerical tests illustrate the performance of the model with respect to several elements subjected to a class of simply supported boundary conditions: plates, circular cylindrical shells, spherical and saddle-shape laminates. The model is first tested by comparing its resulting eigen-parameters, with those few existing of exact or approximate three-dimensional models and, finally, new results are provided for several geometrical and material characteristics for plates and shells.  相似文献   

5.
The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).  相似文献   

6.
The forced vibrations of a cylindrical orthotropic shell are studied. Two types of boundary conditions on the outer surface are examined considering that the displacement vector prescribed on the inner surface varies harmonically with time. Asymptotic solutions of associated dynamic equations of three-dimensional elasticity are found. Amplitudes of forced vibrations are determined and conditions under which resonance occurs are established. Boundary-layer functions are defined. The rate of their decrease with distance from the ends inside the shell is determined. A procedure of joining solutions for the internal boundary-layer problem is outlined in the case for the, if clamping boundary conditions are prescribed at the ends  相似文献   

7.
This paper deals with the research of accuracy of differential equations of deflections.The basic idea is as follows.Firstly,considering the boundary effect the meridianmidsurface displacement u=0,thus we derive the deflection differential equations;secondly we accurately prove that by use of the deflection differential equations or theoriginal differential equations the same inner forces solutions are obtained;finally,weaccurately prove that considering the boundary effect the meridian surface displacementu=0 is an exact solution.In this paper we give the singular perturbation solution of thedeflection differential equations.Finally we check the equilibrium condition and prove theinner forces solved by perturbation method and the outer load are fully equilibrated.Itshows that perturbation solution is accurate.On the other hand,it shows again that thedeflection differential equation is an exact equation.The features of the new differential equations are as follows:1.The accuracies of the new differentia  相似文献   

8.
A compressive postbuckling analysis is presented for a laminated cylindrical shell with piezoelectric actuators subjected to the combined action of mechanical, electric and thermal loads. The temperature field considered is assumed to be a uniform distribution over the shell surface and through the shell thickness, and the electric field is assumed to be the transverse component EZ only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with von Kármán–Donnell-type kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of hybrid laminated cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin shells with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, applied voltage, shell geometric parameter, stacking sequence, as well as initial geometric imperfections are studied.  相似文献   

9.
The objective of the present investigation is to predict the nonlinear buckling and postbuckling characteristics of cylindrical shear deformable nanoshells with and without initial imperfection under hydrostatic pressure load in the presence of surface free energy effects.To this end, Gurtin-Murdoch elasticity theory is implemented into the irst-order shear deformation shell theory to develop a size-dependent shell model which has an excellent capability to take surface free energy effects into account. A linear variation through the shell thickness is assumed for the normal stress component of the bulk to satisfy the equilibrium conditions on the surfaces of nanoshell. On the basis of variational approach and using von Karman-Donnell-type of kinematic nonlinearity, the non-classical governing differential equations are derived. Then a boundary layer theory of shell buckling is employed incorporating the effects of surface free energy in conjunction with nonlinear prebuckling deformations, large delections in the postbuckling domain and initial geometric imperfection. Finally, an eficient solution methodology based on a two-stepped singular perturbation technique is put into use in order to obtain the critical buckling loads and postbuckling equilibrium paths corresponding to various geometric parameters. It is demonstrated that the surface free energy effects cause increases in both the critical buckling pressure and critical end-shortening of a nanoshell made of silicon.  相似文献   

10.
IntroductionCompositelaminatedcylindricalpanelhasbeenusedextensivelyasastructuralconfiguration,mainlyintheaerospaceindustry .Oneoftherecentadvancesinmaterialandstructuralengineeringisinthefieldofsmartstructureswhichincorporatesadaptivematerials.Bytakingadvantageofthedirectandconversepiezoelectriceffects,piezoelectriccompositestructurescancombinethetraditionalperformanceadvantagesofcompositelaminatesalongwiththeinherentcapabilityofpiezoelectricmaterialstoadapttotheircurrentenvironment.Therefore…  相似文献   

11.
In this paper the dynamic anti-plane problem for a functionally graded magneto-electro-elastic strip containing an internal crack perpendicular to the boundary is investigated. The crack is assumed to be either magneto-electrically impermeable or permeable. Integral transforms and dislocation density functions are employed to reduce the problem to Cauchy singular integral equations. Numerical results show the effects of loading combination parameter, material gradient parameter and crack configuration on the dynamic response. With the magneto-electrically permeable assumption, both the magnetical and electrical impacts have no contribution to the crack tip field singularity. However, with the impermeable assumption, both the applied magnetical loads and electrical loads play a dominant role in the dynamic fracture behavior of crack tips. And for the two kinds of crack surface conditions, increasing the graded index can all retard the crack extension.  相似文献   

12.
We analyze the steady-state response of a functionally graded thick cylindrical shell subjected to thermal and mechanical loads. The functionally graded shell is simply supported at the edges and it is assumed to have an arbitrary variation of material properties in the radial direction. The three-dimensional steady-state heat conduction and thermoelasticity equations, simplified to the case of generalized plane strain deformations in the axial direction, are solved analytically. Suitable temperature and displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the thermoelastic equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are then solved by the power series method. In the present formulation, the cylindrical shell is assumed to be made of an orthotropic material, although the analytical solution is also valid for isotropic materials. Results are presented for two-constituent isotropic and fiber-reinforced functionally graded shells that have a smooth variation of material volume fractions, and/or in-plane fiber orientations, through the radial direction. The cylindrical shells are also analyzed using the Flügge and the Donnell shell theories. Displacements and stresses from the shell theories are compared with the three-dimensional exact solution to delineate the effects of transverse shear deformation, shell thickness and angular span.  相似文献   

13.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedshellstructuresarewidelyusedintheaerospace ,marineindustry ,automobileindustryandotherengineeringapplications.Duringtheoperationallife ,thevarianceoftemperatureandmoisturereducestheelasticmoduli…  相似文献   

14.
Exact solution and stability of postbuckling configurations of beams   总被引:1,自引:0,他引:1  
We present an exact solution for the postbuckling configurations of beams with fixed–fixed, fixed–hinged, and hinged–hinged boundary conditions. We take into account the geometric nonlinearity arising from midplane stretching, and as a result, the governing equation exhibits a cubic nonlinearity. We solve the nonlinear buckling problem and obtain a closed-form solution for the postbuckling configurations in terms of the applied axial load. The critical buckling loads and their associated mode shapes, which are the only outcome of solving the linear buckling problem, are obtained as a byproduct. We investigate the dynamic stability of the obtained postbuckling configurations and find out that the first buckled shape is a stable equilibrium position for all boundary conditions. However, we find out that buckled configurations beyond the first buckling mode are unstable equilibrium positions. We present the natural frequencies of the lowest vibration modes around each of the first three buckled configurations. The results show that many internal resonances might be activated among the vibration modes around the same as well as different buckled configurations. We present preliminary results of the dynamic response of a fixed–fixed beam in the case of a one-to-one internal resonance between the first vibration mode around the first buckled configuration and the first vibration mode around the second buckled configuration.  相似文献   

15.
We discuss the non-linear theory of thin shells expressed in terms of displacements of the shell reference surface as the only independent field variables. The formulation is based on the principle of virtual work postulated for the reference surface. In our approach: (1) the vector equilibrium equations are represented through components in the deformed contravariant surface base, and using the compatibility conditions the resulting tangential equilibrium equations are additionally simplified, (2) at the shell boundary the new scalar function of displacement derivatives is defined and new sets of four work-conjugate static and geometric boundary conditions are derived, as well as (3) for prescribed shell geometry all non-linear shell relations are generated automatically by two packages set up in Mathematica. The displacement boundary value problem and the associated homogeneous shell buckling problem are generated exactly without using any additional approximations following from errors of the constitutive equations. Both problems are extremely complex and available only in the computer memory. Such an approach allows us to account also for those a few supposedly small terms which may be critical for finding the correct buckling load of shells sensitive to imperfections. This approach is used in the accompanying paper by Opoka and Pietraszkiewicz [Opoka, S., Pietraszkiewicz, W., 2009. On refined analysis of bifurcation buckling for the axially compressed circular cylinder. International Journal of Solids and Structures, 46, 3111–3123.] to perform the refined numerical analysis of bifurcation buckling for the axially compressed circular cylinder.  相似文献   

16.
Constitutive equations for the resultant forces and moments applied to a shell-like body necessarily couple the influences of the shell geometry and the constitutive nature of the three-dimensional material from which the shell is constructed. Consequently, even when the nonlinear constitutive equation of the three-dimensional material is known, the complicated influence of the shell geometry on the constitutive response of the shell is not known. The main objective of this paper is to develop restrictions on the constitutive equations of nonlinear elastic shells which ensure that exact solutions of the shell equations are consistent with exact nonlinear solutions of the three-dimensional equations for homogeneous deformations. Since these restrictions are nonlinear in nature they provide valuable general theoretical guidance for specific constitutive assumptions about the coupling of material and geometric properties of shells. Examples of the linear theories of a plate and a spherical shell are considered.  相似文献   

17.
Hong-Liang Dai  Ting Dai 《Meccanica》2014,49(5):1069-1081
An analytic study for thermoelastic bending of a functionally graded material (FGM) cylindrical shell subjected to a uniform transverse mechanical load and non-uniform thermal loads is presented. Based on the classical linear shell theory, the equations with the radial deflection and horizontal displacement are derived out. An arbitrary material property of the FGM cylindrical shell is assumed to vary through the thickness of the cylindrical shell, and exact solution of the problem is obtained by using an analytic method. For the FGM cylindrical shell with fixed and simply supported boundary conditions, the effects of mechanical load, thermal load and the power law exponent on the deformation of the FGM cylindrical shell are analyzed and discussed.  相似文献   

18.
Two mixed boundary value problems in potential theory for a semi-infinite cylindrical shell are solved. The first is interpreted as a heat conduction problem for an insulated shell containing a circumferential obstruction. The second is the torsion of a cylindrical shell containing a circumferential crack. For both problems the normal derivative of the potential function is taken as zero on the inner and outer shell walls. The boundary conditions at the end of the shell are mixed with respect to the potential function and its normal derivative. The problems are formulated using integral transforms in a manner leading to a singular integral equation which can be solved by numerical means. Intensity factors along the circumference separating the mixed conditions are computed.  相似文献   

19.
本文采用泰勒级数法分析横观各向同性球壳轴对称弯曲问题。将位移沿厚度方向展开成泰勒级数,利用三维弹性方程求得级数中的各阶导数。对于边值问题,用特征函数法满足球面齐次边界条件,并用最小二乘配点法满足端部条件。  相似文献   

20.
A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length subjected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the functionally graded shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号