首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
本文基于Mori-Tanaka理论,考虑了界面相对超磁致伸缩复合材料的有效性能的影响,得到了具有界面相的超磁致伸缩复合材料的有效性能的一般解析表达。考虑到固化过程中热残余应力对超磁致伸缩复合材料有效性能的影响,通过数值计算,给出超磁致伸缩复合材料有效弹性模量、有效磁致伸缩应变及有效热膨胀系数随夹杂物长径比、体分比、界面参数和固化热残余应力的变化特征曲线,数值结果表明:界面和固化热残余应力对于超磁致复合材料有效性能的影响是显著的。  相似文献   

2.
Zheng Jia  Teng Li 《力学快报》2021,11(3):100247
Flexible electronic devices are often subjected to large and repeated deformation, so that their functional components such as metal interconnects need to sustain strains up to tens of percent, which is far beyond the intrinsic deformability of metal materials(~1%). To meet the stringent requirements of flexible electronics, metal/elastomer bilayers, a stretchable structure that consists of a metal film adhered to a stretchable elastomer substrate, have been developed to improve the stretch capability of metal interconnects. Previous studies have predicted that the metal/elastomer bilayers are much more stretchable than freestanding metal films. However, these investigations usually assume perfect bonding between the metal and elastomer layers. In this work, the effect of the metal/elastomer interface with a finite interfacial stiffness on the stretchability of bilayer structures is analyzed. The results show that the assumption of perfect interface(with infinite interfacial stiffness) may lead to an overestimation of the stretchability of bilayer structures. It is also demonstrated that increased adhesion between the metal and elastomer layers can enhance the stretchability of the metal layer.  相似文献   

3.
磁性斯格明子是在一些铁磁材料中存在的一种重要拓扑磁结构,由于其具有独特的磁-电-力-热多场耦合特性,在未来新型自旋电子器件中有着广泛的应用前景。然而,磁性斯格明子一般需要在外加磁场下才能稳定存在,极大地限制了其在自旋电子器件中的实际应用。本文基于实空间下磁电材料的相场模拟,发现铁电和铁磁复合薄膜中铁电斯格明子可以通过界面变形来稳定铁磁斯格明子。由于力电耦合效应,铁电层中铁电斯格明子的非均匀分布极化在界面产生周期性的非均匀界面变形。界面变形通过力磁耦合效应,使铁磁层中的磁性斯格明子在没有外加磁场的条件下能够稳定存在。本文的研究结果表明,基于磁电复合材料中的力-电-磁耦合效应,通过优化设计复合材料中不同组元的结构,可以实现拓扑磁结构的力学调控,从而为设计基于拓扑磁结构的新型自旋电子器件提供了新思路。  相似文献   

4.
基于Gurtin-Murdoch表/界面理论和广义自洽方法,获得了考虑界面应力时纳米涂层纤维增强复合材料有效反平面剪切模量的闭合形式解。讨论了涂层的壁厚、力学性能和界面性能对复合材料有效性能的影响。结果显示:在纳米尺度范围内,复合材料的有效反平面剪切模量受纳米涂层的尺寸影响显著。纤维体积分数一定时,涂层壁厚越大,纤维半径越小,有效反平面剪切模量与经典结果偏差越大。纤维刚度和涂层界面性能对复合材料有效模量的影响也取决于涂层刚度,非常软或非常硬的涂层都大大限制了纤维刚度对复合材料有效模量的贡献,过高的涂层刚度屏蔽了纳米复合材料表/界面效应的影响。  相似文献   

5.
In this paper, the equivalent inclusion method is implemented to estimate the effective mechanical properties of unidirectional composites in the presence of an imperfect interface. For this purpose, a representative volume element containing three constituents, a matrix, and interface layer, and a fiber component, is considered. A periodic eigenstrain defined in terms of Fourier series is then employed to homogenize non-dilute multi-phase composites. In order to take into account the interphase imperfection effects on mechanical properties of composites, a stiffness parameter in terms of a matrix and interphase elastic modulus is introduced. Consistency conditions are also modified accordingly in such a way that only the part of the fiber lateral stiffness is to be effective in estimating the equivalent composite mechanical properties. Employing the modified consistency equations together with the energy equivalence relation leads to a set of linear equations that are consequently used to estimate the average values of eigenstrain in non-homogeneous phases. It is shown that for composites with both soft and hard reinforcements, largest stiffness parameter that indicates complete fiber–matrix interfacial debonding causes the same equivalent lateral properties.  相似文献   

6.
Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.  相似文献   

7.
利用环-块磨损试验机,在干摩擦条件下研究了铸态与T6处理态Al18B4O33晶须增强AC4C铝基复合材料的摩擦磨损行为。结果表明:与铸态复合材料相经,T6处理态复合材料的耐磨性较差;晶须与基体间的界面化学反应影响复合材料的摩擦磨损特性,在本文试验载荷范围内,复合材料发生了由轻度磨损向严重磨损的转化;在高载荷下,除 了产生擦伤和粘着,在表层和次表层发生的应变硬化还会导致界面开裂、晶须断裂和分离;在低  相似文献   

8.
毛润生  黄争鸣 《力学季刊》2020,41(4):622-632
本文用广义胞元法结合应力集中系数模型,从细观、宏观力学结合的角度,预测了弱界面复合材料偏轴拉伸强度值.用广义胞元法/高精度广义胞元法计算复合材料开裂前和开裂后的应力场,引入基体应力集中系数以得到基体真实应力.在计算真实应力时根据宏观试验现象考量是否对界面开裂后的复合材料进行刚度衰减,最终形成4种方案计算出复合材料的偏轴拉伸强度.通过对比芳纶纤维和亚麻纤维两种弱界面复合材料的偏轴拉伸强度试验值,找到了最可靠的预报方案并具有良好的预报精度.  相似文献   

9.
The main purpose of the present work is to study the influences of magnetostriction, electrostriction and piezomagnetic/piezoelectric stiffening on the fracture behavior of a layered multiferroic composite. For comparison, it is assumed that there is a crack, parallel to the interface, in each layer. Methods of cosine transform and Cauchy singular integral equations are used to solve the crack problem. Numerical results of the stress intensity factor (SIF) are provided and the computational accuracy is demonstrated. Discussion on the numerical results indicates that the multiferroic composite consisting of cobalt ferrite and barium titanate layers are more prone to fracture under electric loading than under magnetic loading. In the case of magnetostriction, to increase the shear modulus of the piezomagnetic layer would raise the SIF; but to increase that of the piezoelectric layer would reduce the SIF; in the case of electrostriction, inverse results are obtained. Piezomagnetic stiffening can affect the SIF when the composite is under electrostriction; piezoelectric stiffening can influence the SIF if the composite is under magnetostriction. In addition, it is also revealed that two parallel equal cracks may shield each other even if an interface exists between them.  相似文献   

10.
Polymer-supported metal films as interconnects for flexible, large area electronics may rupture when they are stretched, and the rupture strain is strongly dependent upon the film/substrate interfacial properties. This paper investigates the influence of interfacial properties on the ductility of polymer-supported metal films by modeling the microstructure of the metal film as well as the film/substrate interface using the method of finite elements and the cohesive zone model (CZM). The influence of various system parameters including substrate thickness, Young’s modulus of substrate material, film/substrate interfacial stiffness, strength and interfacial fracture energy on the ductility of polymer-supported metal films is systematically studied. Obtained results demonstrate that the ductility of polymer-supported metal films increases as the interfacial strength increases, but the increasing trend is affected distinctly by the interfacial stiffness.  相似文献   

11.
吴永礼 《力学学报》2000,32(6):727-738
对非理想界面的三相复合材料,提出了计算弹性应力场的微观力学模型,在适当的简化假设下,对带界相的颗粒增强和纤维增强复合材料,得到了应力场的计算公式。以剪切载荷为例给出了数值例子。给出的数值结果表明非理想界面对三相复合材料应力场的影响。  相似文献   

12.
External bonding of FRP plates or sheets has emerged as a popular method for strengthening reinforced concrete. Debonding along the FRP–concrete interface can lead to premature failure of the structure. In this study, a bond-slip model is established to study the interface debonding induced by a flexural crack in a FRP-plated concrete beam. The reinforced concrete beam and FRP plate are modeled as two linearly elastic Euler–Bernoulli beams bonded together through a thin layer of FRP–concrete interface. The interface layer is essentially modeled as a large fracture processing zone of which the stress–deformation relationship is described by a nonlinear bond-slip model. Three different bond-slip models (bi-linear, triangular and linear-damaging) are used. By dividing the debonding process into several stages, governing equations of interfacial shear and normal stresses are obtained. Closed-form solutions are then obtained for the interfacial shear and normal stresses and the deflection of the beam in each stage of debonding. In such a way, the proposed model unifies the whole debonding process, including elastic deformation, debonding initiation and growth, into one model. With such a superior feature, the proposed model provides an efficient and effective analytical tool to study FRP–concrete interface debonding.  相似文献   

13.
杨骁  温鑫  卫盼朝  冷蓉 《力学季刊》2022,43(2):382-394
将上部子梁的裂纹等效为线性扭转弹簧,考虑组合梁连接面的滑移位移,建立了以组合裂纹梁挠度和滑移位移为基本未知量的组合裂纹梁弯曲变形一维数学模型.利用Laplace变换及其逆变换,给出了组合裂纹梁弯曲变形一维数学模型的解析通解.在此基础上,研究了均布载荷作用下简支组合裂纹梁的弯曲变形问题,数值分析了连接面剪切刚度、裂纹深度、数目和位置等参数对组合裂纹梁弯曲变形的影响,结果表明:在裂纹处,组合裂纹梁挠度曲线存在尖点,而横截面转角曲线存在跳跃,且随着裂纹数目和深度的增加,挠度和横截面转角跳跃值增大;随着连接面剪切刚度的增加,挠度和横截面转角减小,并最终趋于定值.并且,随着组合梁跨高比的增加,连接面剪切刚度对梁挠度影响逐渐减弱.  相似文献   

14.
针对新型含复合材料铠装层的非黏结柔性立管,推导了各向异性复合材料拉力铠装层在内、外压和轴拉力作用下的控制方程,且考虑了载荷作用下可能出现的层间间隙,建立了非黏结柔性立管的轴对称载荷响应模型。采用循环验证算法求解,获得了管道的抗拉刚度、抗扭刚度、层间压力、层间间隙等重要参数。建立了有限元仿真模型,验证了理论模型的可靠性。算例研究表明:层间间隙出现在螺旋层与圆筒层之间,不考虑间隙时,抗拉刚度的预测值较高;相较于传统的钢质铠装层柔性管,复合铠装层管的抗拉刚度以及抗扭刚度均更大,且抗拉刚度随着管外压力增大而降低程度更小,复合铠装层在柔性立管的应用中能够达到铠装层的刚度性能要求。  相似文献   

15.
The effects of carbon nanotubes on the mechanical behavior of elastomeric materials is investigated. The large deformation uniaxial tension and uniaxial compression stress-strain behaviors of a representative elastomer are first presented. This elastomer is then reinforced with multi-wall carbon nanotubes (MWNTs) and the influence of weight fraction of MWNTs on the large deformation behavior of the resulting composite is quantified. The initial stiffness and subsequent strain-induced stiffening at large strains are both found to increase with MWNT content. The MWNTs are also found to increase both the tensile strength and the tensile stretch at break. A systematic approach for reducing the experimental data to isolate the MWNT contribution to the strain energy of the composite is presented. A constitutive model for the large strain deformation behavior of MWNT-elastomer composites is then developed. The effects of carbon nanotubes are modeled via a constitutive element which tracks the stretching and rotation of a distribution of wavy carbon nanotubes. The MWNT strain energy contribution is due to the bending/unbending of the initial waviness and provides the increase in initial stiffness as well as the retention and further enhancement of the increase in stiffness with large strains. The model is shown to track the stretching and rotation of the CNTs with macroscopic strain as well as predict the dependence of the macroscopic stress-strain behavior on the MWNT content for both uniaxial tension and uniaxial compression.  相似文献   

16.
本文基于超磁致伸缩材料非线性本构,从基本的控制方程出发,对层状柱壳磁电复合材料的非线性磁电响应进行理论研究,讨论了不同边界下磁场频率以及压电材料厚度比对磁电系数的影响,并得到了不同预压力下磁场大小对于磁电系数的影响。数值计算结果显示,对于Tefernol-D/PZT-5层状磁电复合材料,随着预压力值增大,磁电系数最大值减小,取得最大值时对应的磁场值逐渐增大;不同边界条件、磁场频率和磁场大小下,材料厚度比对磁电系数的也有着不同的影响。特别地当外加磁场频率较大时,相应于压电层厚度比,磁电系数呈现多极值现象。  相似文献   

17.
In order to predict the effective properties of multiferroic composite materials, the effective material constants of multiferroic composites with the coated inclusion and imperfect interface are investigated. Based on the generalized self-consistent theory, the closed-form solutions of the effective material constants are derived. For the composites with piezomagnetic inclusion, piezoelectric coating and polymer matrix, numerical calculations are performed to present the influences of the imperfect interface cooperating with the coating on the effective material constants. From the results, it can be observed that the effective constants can be enhanced by the coating but reduced by the imperfect interface. Moreover, the coating has the shielding effects on the imperfect interface for the composite structures with its higher filling ratio.  相似文献   

18.
For a composite with thin interface layers between inclusions and the matrix, the effective elastic properties and the effective conductivity (thermal or electric) are almost unaffected by the layers, provided (1) the layer thickness is much smaller than the inclusion sizes and (2) the contrast between the properties of the layers and either of the phases is not overly high. For composites with nanoparticles, the interface thickness may be comparable to the particle sizes. Therefore, the effect of interfaces on the overall properties may be substantial. The controlling parameters are (1) the ratio of the interface thickness to particle sizes and (2) variability of the properties across the interface thickness. Explicit expressions constructed in the present work show that the overall elastic/conductive properties are affected, mostly, by the interface thickness (normalized to the size of the core particle) and are much less sensitive to the extent of the variation and its exact character. Similarities and differences between the elasticity and the conductivity problems are discussed.  相似文献   

19.
This work analyzes nonlinear buckling of a single spherical shell imperfectly bonded to an infinite elastic matrix under a compressive remote load. The inclusion is modeled using a nonlinear shell formulation and the matrix is treated as a linear elastic body. Imperfect bonding conditions are realized through a linear spring interface model. A variational method is used to derive the governing differential equations, which are cast into a tractable set of nonlinear algebraic equations using the Galerkin method. An incremental iterative technique based on the modified Newton–Raphson method is employed to find the critical load of the system. The accuracy and convergence properties of the proposed method are validated through finite element analysis. The study is relevant to the analysis of compressive failure of syntactic foams used in marine and aerospace applications. Results are specialized to glass particle-vinyl ester matrix syntactic foams to test the hypothesis as to whether microballoons’ buckling is a dominant failure mechanism in such composites under compression. Parametric studies are conducted to understand the effect of interfacial properties and inclusion wall thickness on the overall mechanical behavior of the composite. Comparisons between analytical findings and experimental results on compressive response of syntactic foams and isolated microballoons indicate that inclusion buckling is unlikely a determinant of compressive failure in vinyl ester-glass systems. In particular, the matrix is found to exert a beneficial stabilizing effect on the inclusions, which fail under brittle fracture before the onset of buckling.  相似文献   

20.
FRP-混凝土界面粘结行为的参数影响研究   总被引:3,自引:0,他引:3  
彭晖  高勇  谢超  崔潮  张克波 《实验力学》2014,29(4):489-498
FRP-混凝土界面的粘结性能对FRP加固混凝土结构力学行为和破坏模式有着重要影响。本文对表征FRP-混凝土界面粘结性能的三个重要参数(界面初始刚度、最大剪应力、界面破坏能)开展研究,通过13个单剪试件的试验考察了混凝土强度、胶层厚度和粘结长度等因素对界面粘结行为的影响,根据试验结果拟合了界面破坏能、最大剪切应力与胶层剪切刚度、混凝土强度之间的函数关系。在试验研究基础上,构建了外贴FRP-混凝土界面粘结的有限元模型。通过有限元分析考察了界面破坏能等三个参数不变的前提下,不同的局部粘结滑移本构关系对界面粘结行为的影响;进而研究了其中一个参数变化时引起的界面粘结性能改变。研究结果表明:界面粘结承载力随着胶层厚度增加而逐渐提高;胶层厚度与界面破坏能成正比,与峰值剪应力成反比;当界面破坏能等三个参数保持不变时,局部粘结滑移本构关系对FRP-混凝土界面粘结性能的影响较小;三个参数中的一个增大时将延缓界面破坏的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号