首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of diffraction of waves due to plane harmonic P-wave incident normally on a line crack situated in an infinite micro-polar elastic medium has been studied in this paper. The problem has been solved for both low and high frequencies for small coupling parameter. The stress intensity factors (SIF) have been obtained in micro-polar elastic medium from which the corresponding stress intensity factor for classical elastic medium can be deduced.  相似文献   

2.
Diffraction of normal compression waves by a penny-shaped crack in a fluid-saturated porous medium is investigated. Two wave types are considered, namely, compressional wave of the first kind, and the second kind. The former, also known as fast wave, propagates primarily through the solid, whereas the latter or slow wave, propagates mainly in the fluid. Each wave propagates in the medium along with induced wave of the same type in the companion constituent of the material. Application of Biot’s theory in conjunction with integral transform technique reduces the problem to a mixed boundary-value problem whose solution is in turn governed by a Fredholm integral equation of the second kind. Near-field and far-field solutions are obtained in terms of the dynamic stress-intensity factor and the scattering cross section, respectively. They are of particular importance to the linear elastic fracture mechanics (LEFM) and in the scattering theory of elastic waves. The mode I stress-intensity factors are computed numerically for a set of selected material property values, and shown graphically for various mass density and viscosity-to-permeability ratios. The obtained results reveal significant impact of the presence of pore fluid upon the stress-intensity factors, both magnitudes and frequencies at their peak values. The influence of the fluid is also observed from the calculated scattering cross sections of the scattered far-field. Accuracy of the present solution procedure is verified by comparing the numerical results with existing results in the limiting case of dry elastic materials.  相似文献   

3.
This study is concerned with the reflection and transmission of plane waves at an imperfectly bonded interface between two orthotropic micropolar elastic half-spaces with different elastic and micropolar properties. There exist three types of coupled waves in xy-plane. The reflection and transmission coefficients of quasi-longitudinal (QLD) wave, quasi-coupled transverse microrotational (QCTM) wave and quasi-coupled transverse displacement (QCTD) wave have been derived for different incidence waves and deduced for normal force stiffness, transverse force stiffness, transverse couple stiffness and perfect bonding. The numerical values of modules of the reflection and transmission coefficients are presented graphically with the angle of incidence for orthotropic micropolar medium (MOS) and isotropic micrpolar medium (MIS). Some particular cases of interest have been deduced from the present investigation.  相似文献   

4.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

5.
An application of the Biot’s theory to the diffraction problem of plane harmonic dilatational waves (P-waves) of the first kind and the second kind by a line crack or geometric discontinuity of finite width embedded in a saturated two-phase medium is presented in this paper. The crack surfaces are assumed impermeable, and the integral transform method is utilized to reduce the mixed boundary-value problem to a single Fredholm integral equation. The magnitudes of the intensity of the stress fields near the crack tips measured by Mode I dynamic stress-intensity factor (dimensionless) are computed and displayed graphically against dimensionless circular frequency (ω) for several dimensionless material property values, namely, viscosity-to-permeability and mass density ratios. In the case of the normally incident P-waves of the first kind, the results in terms of stress-intensity factor are also compared with the corresponding values of dry elastic material. All the stress-intensity factor curves are shown to exhibit a similar character in that they rise to the peaks at certain frequency values and then decay with increasing frequencies. At certain frequency ranges and material property values, amplification in the dynamic stress-intensity factor can be substantially larger than those encountered in dry elastic materials. The stress-intensity factor is found to be more affected by the changes in the ratio of viscosity-to-permeability at lower mass density ratio. With fluid mass density 10% of the bulk mass density, the viscosity-to-permeability ratio of 0.01 gives the highest increase of about 32% in the magnitude of stress-intensity factor compared to the dry material counterpart value, while a decrease of about 9% is observed for the viscosity-to-permeability ratio of 100. It is also found that change in mass density ratio has significant effect upon the magnitude of stress-intensity factor at lower ratio of viscosity-to-permeability. As for the normally incident P-waves of the second kind, the presence of the pore fluid affects both the magnitude and character of the stress-intensity factor. Large variations in the magnitude of stress-intensity factor are observed as viscosity-to-permeability ratio changes from 1 to 100. At the ratio of viscosity-to-permeability of 1.0, the stress-intensity factor curves increase gradually with frequency and exhibit the peaks in curves for mass density ratio of 0.3 and higher. As the viscosity-to-permeability ratio is raised to 100, the stress-intensity factor curves increase monotonically with frequency at a much faster rate throughout the frequency range of interest (ω = 0–2), and the change in mass density ratio is shown to have little effect on the stress-intensity factor, especially within the low frequency ranges. The results obtained in this study are useful in the mechanics of fracture initiation of saturated porous materials under the fluctuating mechanical and/or pore fluid loadings that are periodic with time.  相似文献   

6.
Transformational elastodynamics can be used to protect sensitive structures from harmful waves and vibrations. By designing the material properties in a region around the sensitive structure, a cloak, the incident waves can be redirected as to cause minimal or no harmful response on the pertinent structure. In this paper, we consider such transformational cloaking built up by a suitably designed metamaterial exhibiting micropolar properties. First, a theoretically perfect cloak is obtained by designing the properties of an (unphysical) restricted micropolar material within the surrounding medium. Secondly, we investigate the performance of the cloak under more feasible design criteria, relating to finite elastic parameters. In particular, the behavior of a physically realizable cloak built up by unrestricted micropolar elastic media is investigated. Numerical studies are conducted for the case of buried as well as surface breaking structures in 2D subjected to incident Rayleigh waves pertinent to seismic loading. The studies show how the developed cloaking procedure can be utilized to substantially reduce the response of the structure. In particular, the results indicate the performance of the cloak in relation to constraints on the elastic parameters.  相似文献   

7.
The problem of scattering of horizontal polarized shear waves by the two cracks in a uniform magnetostatic field is considered. The magnetic field is assumed to be parallel to the crack surfaces as well as perpendicular to the crack surfaces. The elastic medium under consideration is a homogeneous, isotropic and infinitely conducting one. The solution of the problem is reduced into a pair of triple integral equations having trigonometrical kernels. Using the finite Hilbert transform technique, solution of the pair of triple integral equations is obtained for the low frequencies. Finally, approximate formulae are derived for the stress intensity factors.  相似文献   

8.
The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. Reflection and transmission phenomena of plane waves are investigated, which impinge obliquely at the plane interface between a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.The incident wave is assumed to be striking at the interface after propagating through the micropolar generalized thermoelastic solid. The amplitude ratios of various reflected and transmitted waves are obtained in a closed form. It is found that they are a function of the angle of incidence and frequency and are affected by the elastic properties of the media. Micropolarity and thermal relaxation effects are shown on the amplitude ratios for a specific model. The results of some earlier literatures are also deduced from the present investigation.  相似文献   

9.
A number of hypotheses were formulated using the properties of an asymptotic solution of boundary-value problems of the three-dimensional micropolar (moment asymmetric) theory of elasticity for areas with one geometrical parameter being substantially smaller than the other two (plates and shells). A general theory of bending deformation of micropolar elastic thin plates with independent fields of displacements and rotations is constructed. In the constructed model of a micropolar elastic plate, transverse shear strains are fully taken into account. A problem of determining the stress-strain state in bending deformation of micropolar elastic thin rectangular plates is considered. The numerical analysis reveals that plates made of a micropolar elastic material have high strength and stiffness characteristics.  相似文献   

10.
The effect of couple stresses at a crack tip is investigated by considering two particular problems. A formally exact solution is obtained (for couple-stress and micropolar elasticity) for the case of a semi-infinite crack with a prescribed internal stress. Secondly, the problem of a finite crack in an infinite medium (with couple stresses) under uniform tension at infinity, is solved by matched expansions when the couple stress parameter is small compared with the crack length. In each case it is shown that the energy release rate from a crack tip tends to the classical elastic value as the couple stress (or micropolar) parameter tends to zero.  相似文献   

11.
A generalized continuum representation of two-dimensional periodic cellular solids is obtained by treating these materials as micropolar continua. Linear elastic micropolar constants are obtained using an energy approach for square, equilateral triangular, mixed triangle and diamond cell topologies. The constants are obtained by equating two different continuous approximations of the strain energy function. Furthermore, the effects of shear deformation of the cell walls on the micropolar elastic constants are also discussed. A continuum micropolar finite element approach is developed for numerical simulations of the cell structures. The solutions from the continuum representation are compared with the “exact” discrete simulations of these cell structures for a model problem of elastic indentation of a rectangular domain by a point force. The utility of the micropolar continuum representation is illustrated by comparing various cell structures with respect to the stress concentration factor at the root of a circular notch.  相似文献   

12.
The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.  相似文献   

13.
Two-dimensional plane wave propagation in an orthotropic micropolar elastic solid is studied. There exist three types of coupled waves in xy-plane, whose velocities depend upon the angle of propagation and material parameters. A problem on reflection of these plane waves from a stress-free boundary is considered. The reflection coefficients of various reflected waves are computed numerically for a particular model of the solid. The effects of anisotropy upon the velocities and reflection coefficients are depicted graphically for different angles of propagation.  相似文献   

14.
A plane longitudinal displacement wave is made incident upon a chiral slab of uniform thickness, interposed between two different semi-infinite micropolar elastic solids. The amplitude ratios of various reflected and refracted waves are obtained using the two possible sets of boundary conditions. The variations of various amplitude ratios with the angle of incidence as well as with the frequency are depicted graphically, for a specific problem. The effect of chirality parameter and the thickness of the chiral slab on these amplitude ratios have been noticed. Results of some earlier researchers have also been reduced as special cases of present formulation.  相似文献   

15.
The present study is concerned with the wave propagation in an electro-microelastic solid. The reflection phenomenon of plane elastic waves from a stress free plane boundary of an electro-microelastic solid half-space is studied. The condition and the range of frequency for the existence of elastic waves in an infinite electro-microelastic body are investigated. The constitutive relations and the field equations for an electro-microelastic solid are stemmed from the Eringen’s theory of microstretch elasticity with electromagnetic interactions. Amplitude ratios and energy ratios of various reflected waves are presented when an elastic wave is made incident obliquely at the stress free plane boundary of an electro-microelastic solid half-space. It has been verified that there is no dissipation of energy at the boundary surface during reflection. Numerical computations are performed for a specific model to calculate the phase speeds, amplitude ratios and energy ratios, and the results obtained are depicted graphically. The effect of elastic parameter corresponding to micro-stretch is noticed on reflection coefficients, in particular. Results of Parfitt and Eringen [Parfitt, V.R., Eringen, A.C., 1969. Reflection of plane waves from a flat boundary of a micropolar elastic half-space. J. Acoust. Soc. Am. 45, 1258–1272] have also been reduced as a special case from the present formulation.  相似文献   

16.
Helical structures are designed to support heavy loads, which can significantly affect the dynamic behaviour. This paper proposes a physical analysis of the effect of axial load on the propagation of elastic waves in helical beams. The model is based on the equations of motion of loaded helical Timoshenko beams. An eigensystem is obtained through a Fourier transform along the axis. The equations are made dimensionless for beams of circular cross-section and the number of parameters governing the problem is reduced to four (helix angle, helix index, Poisson coefficient, and axial strain). A parametric study is conducted. The effect of loading is quantified in high, medium and low-frequency ranges. Noting that the effect is significant in low frequencies, dispersion curves of stretched and compressed helical beams are presented for different helix angles and radii. This effect is greater as the helix angle increases. Both the effects of stress and geometry deformation are shown to be non-negligible on elastic wave propagation.  相似文献   

17.
Dynamic fracture toughness determined from load-point displacement   总被引:6,自引:0,他引:6  
The paper presents a method to determine dynamic fracture toughness using a notched three-point bend specimen. With dynamic loading of a specimen there is a complex relation between the stress-intensity factor and the force applied to the specimen. This is due to effects of inertia, which have to be accounted for to evaluate a correct value of the stress-intensity factor. However, the stress-intensity factor is proportional to the load-point displacement if the fundamental mode of vibration is predominant in the specimen. The proportionality constant depends only on the geometry and stiffness of the specimen. In the present method we have measured the applied force and load-point displacement by a modified Hopkinson pressure bar, where two-point strain measurement has been used to evaluate force and displacement for times greater than the transit time for elastic waves in the Hopkinson bar. We have compared the method with the stress-intensity factor derived from strain measurement near the notch tip and good agreement was obtained. The method is well suited for high-temperature testing and results from fracture toughness tests of brittle materials at ambient and elevated temperatures are presented.  相似文献   

18.
In this paper a solution is derived to treat the three-dimensional elastostatic problem of a narrow rectangular crack embedded in an infinite elastic medium and subjected to equal and opposite shear stress distribution across its faces. Employing two-dimensional integral transforms and assuming a plane-strain solution across the width of the crack, the stress field ahead of the crack length is reduced to the solution of an integral equation of Fredholm type. A numerical solution of the integral equation and the corresponding mode II stress-intensity factor is obtained for several crack dimensions and Poisson's ratios of the material.  相似文献   

19.
A nonlinear theory of continuously distributed dislocation and disclination type defects in elastic media with intrinsic rotational degrees of freedom and couple stresses is proposed. The mediumstrains are assumed to be finite. The solving equations of the continuum theory of defects are obtained by passing to the limit from a discrete set of isolated dislocations and disclinations to their continuous distribution. The notions of dislocation and disclination densities in a micropolar body under large deformations are introduced. Incompatibility equations are obtained and a boundaryvalue problem of equilibriumis posed for an elastic micropolar body with a given density of distributed defects. A nonlinear problem of determining the intrinsic stresses in a hollow circular cylinder due to a given distribution of disclinations is solved.  相似文献   

20.
The scattering by a circle is considered when the outside medium is isotropic and the inside medium is anisotropic (orthotropic). The problem is a scalar one and is phrased as a scattering problem for elastic waves with polarization out of the plane of the circle (SH wave), but the solution is with minor modifications valid also for scattering of electromagnetic waves. The equation inside the circle is first transformed to polar coordinates and it then explicitly contains the azimuthal angle through trigonometric functions. Making an expansion in a trigonometric series in the azimuthal coordinate then gives a coupled system of ordinary differential equations in the radial coordinate that is solved by power series expansions. With the solution inside the circle complete the scattering problem is solved essentially as in the classical case. Some numerical examples are given showing the influence of anisotropy, and it is noted that the effects of anisotropy are generally strong except at low frequencies where the dominating scattering only depends on the mean stiffness and not on the degree of anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号