首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The stability of steady, dynamic, anti-plane slipping at a planar interface between two dissimilar anisotropic linear elastic solids is studied. The solids are assumed to possess a plane of symmetry normal to the slip direction, so that in-plane displacements and normal stress changes on the slip plane do not occur. Friction at the interface is assumed to follow a rate and state-dependent law with velocity weakening behavior in the steady state. The stability to spatial perturbations of the form exp(ikx1), where k is the wavenumber and x1 is the coordinate along the interface is studied. The critical wavenumber magnitude, |k|cr, above which there is stability and the corresponding phase velocity, c, of the neutrally stable mode are obtained from the stability analysis. Numerical plots showing the dependence of |k|cr and c on the unperturbed sliding velocity, Vo, are provided for various bi-material combinations of practical interest.  相似文献   

2.
The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations at the interface are of the form exp(ikx 1+pt), where k is the wavenumber, x 1 is the coordinate along the interface, p is the time response to the perturbation and t is time. A key feature of the problem is that interfacial waves both in freely slipping contact as well as in bonded contact exist for the problem. Attention is focused on the role of the interfacial waves on slip stability. Instabilities are plotted in the $\operatorname{Re} (pL/V_{o})$ versus $\operatorname{Im} (p/|k|c_{s})$ plane, where L is a length scale in the friction law, V o is the unperturbed slip velocity and c s is the shear wave speed of the layer. Stability of both rapid and slow slip is studied. The results show one mechanism by which instabilities occur is the destabilization by friction of the interfacial waves in freely slipping contact/bonded contact. This occurs even in slow sliding, thus confirming that the quasi-static approximation is not valid for slow sliding. The effect of material properties and layer thickness on the stability results is studied.  相似文献   

3.
We consider wave propagation along the interface of two dissimilar anisotropic elastic half-spaces that are in sliding contact. A new secular equation is obtained that covers all special cases in one equation. One special case is when a Rayleigh wave (called the RR-wave) can propagate in both half-spaces with the same wave speed. Another special case is when a slip wave (called the SS-wave) can propagate in each of the half-spaces with the same wave speed. If a Rayleigh wave and a slip wave can propagate in one of the half-spaces it is called the RS-wave. In this case an interfacial slip wave exists in which the other half-space is at rest unless an RS-wave can also propagate in the other half-space. The results for general anisotropic elastic materials are applied to orthotropic materials.  相似文献   

4.
We consider quasistatic motion and stability of a single degree of freedom elastic system undergoing frictional slip. The system is represented by a block (slider) slipping at speed V and connected by a spring of stiffness k to a point at which motion is enforced at speed V0 We adopt rate and state dependent frictional constitutive relations for the slider which describe approximately experimental results of Dieterich and Ruina over a range of slip speeds V. In the simplest relation the friction stress depends additively on a term A In V and a state variable θ; the state variable θ evolves, with a characteristic slip distance, to the value ? B In V, where the constants A, B are assumed to satisfy B > A > 0. Limited results are presented based on a similar friction law using two state variables.Linearized stability analysis predicts constant slip rate motion at V0 to change from stable to unstable with a decrease in the spring stiffness k below a critical value kcr. At neutral stability oscillations in slip rate are predicted. A nonlinear analysis of slip motions given here uses the Hopf bifurcation technique, direct determination of phase plane trajectories, Liapunov methods and numerical integration of the equations of motion. Small but finite amplitude limit cycles exist for one value of k, if one state variable is used. With two state variables oscillations exist for a small range of k which undergo period doubling and then lead to apparently chaotic motions as k is decreased.Perturbations from steady sliding are imposed by step changes in the imposed load point motion. Three cases are considered: (1) the load point speed V0 is suddenly increased; (2) the load point is stopped for some time and then moved again at a constant rate; and (3) the load point displacement suddenly jumps and then stops. In all cases, for all values of k:, sufficiently large perturbations lead to instability. Primary conclusions are: (1) ‘stick-slip’ instability is possible in systems for which steady sliding is stable, and (2) physical manifestation of quasistatic oscillations is sensitive to material properties, stiffness, and the nature and magnitude of load perturbations.  相似文献   

5.
We investigate the linearized response of two elastic half-spaces sliding past one another with constant Coulomb friction to small three-dimensional perturbations. Starting with the assumption that friction always opposes slip velocity, we derive a set of linearized boundary conditions relating perturbations of shear traction to slip velocity. Friction introduces an effective viscosity transverse to the direction of the original sliding, but offers no additional resistance to slip aligned with the original sliding direction. The amplitude of transverse slip depends on a nondimensional parameter η=csτ0/μv0, where τ0 is the initial shear stress, 2v0 is the initial slip velocity, μ is the shear modulus, and cs is the shear wave speed. As η→0, the transverse shear traction becomes negligible, and we find an azimuthally symmetric Rayleigh wave trapped along the interface. As η→∞, the inplane and antiplane wavesystems frictionally couple into an interface wave with a velocity that is directionally dependent, increasing from the Rayleigh speed in the direction of initial sliding up to the shear wave speed in the transverse direction. Except in these frictional limits and the specialization to two-dimensional inplane geometry, the interface waves are dissipative. In addition to forward and backward propagating interface waves, we find that for η>1, a third solution to the dispersion relation appears, corresponding to a damped standing wave mode. For large-amplitude perturbations, the interface becomes isotropically dissipative. The behavior resembles the frictionless response in the extremely strong perturbation limit, except that the waves are damped. We extend the linearized analysis by presenting analytical solutions for the transient response of the medium to both line and point sources on the interface. The resulting self-similar slip pulses consist of the interface waves and head waves, and help explain the transmission of forces across fracture surfaces. Furthermore, we suggest that the η→∞ limit describes the sliding interface behind the crack edge for shear fracture problems in which the absolute level of sliding friction is much larger than any interfacial stress changes.  相似文献   

6.
T.C.T. Ting 《Wave Motion》2011,48(4):335-344
In a recent paper Destrade [1] studied surface waves in an exponentially graded orthotropic elastic material. He showed that the quartic equation for the Stroh eigenvalue p is, after properly modified, a quadratic equation in p2 with real coefficients. He also showed that the displacement and the stress decay at different rates with the depth x2 of the half-space. Vinh and Seriani [2] considered the same problem and added the influence of gravity on surface waves. In this paper we generalize the problem to exponentially graded general anisotropic elastic materials. We prove that the coefficients of the sextic equation for p remain real and that the different decay rates for the displacement and the stress hold also for general anisotropic materials. A surface wave exists in the graded material under the influence of gravity if a surface wave can propagate in the homogeneous material without the influence of gravity in which the material parameters are taken at the surface of the graded half-space. As the wave number k → ∞, the surface wave speed approaches the surface wave speed for the homogeneous material. A new matrix differential equation for surface waves in an arbitrarily graded anisotropic elastic material under the influence of gravity is presented. Finally we discuss the existence of one-component surface waves in the exponentially graded anisotropic elastic material with or without the influence of gravity.  相似文献   

7.
Effect of anisotropy on thermal instability in a fluid saturated porous medium subjected to an inclined temperature gradient of finite magnitude is analysed using Galerkin technique. Results are compared with those of isotropic and horizontally isotropic cases. It is observed that anisotropic medium is the most stable while either isotropic situation or the horizontally isotropic situation is the most unstable one depending on the horizontal Rayleigh number (R H ), anisotropy parametersk 1(=k y /k x ), and ?2(=?γ/? z ).  相似文献   

8.
The contact problem between two orthotropic solids is examined. The problem is solved by using Lodge's method, which permits the transformation of the boundary-value problem of an anisotropic solid to a form identical with the corresponding problem of an isotropic medium. The proposed solution is then compared with known results of certain cases and it is observed that it producesHertz's solution when used for an isotropic case,Lodge's solution when applied to contact between an orthotropic solid and a rigid plane and, finally,Love's solution if the solid is transversely isotropic with the axis of material symmetry perpendicular to the rigid plane of contact.  相似文献   

9.
Motivated by recent attenuation experiments on finely grained samples, we reanalyse the Raj-Ashby model of grain-boundary sliding. Two linearly elastic layers having finite thickness and identical elastic constants are separated by an interface (grain boundary) whose location is a given periodic function of position. Dissipation is confined to that interfacial region. It is caused by two mechanisms: a slip (boundary sliding) viscosity, and grain-boundary diffusion, with corresponding Maxwell relaxation times tv and td. Owing to the assumption of a given, time-independent interface, the resulting boundary-value problem (b.v.p.) is linear and time-separable. The response to time-periodic forcing depends on angular frequency ω, on the ratio M=tv/td of Maxwell times, and on the characteristic interface slope. The b.v.p. is solved using a perturbation method valid for small slopes. To relate features of the mechanical loss spectrum previously studied in isolation, we first discuss the solution as a function of M. Motivated by experiments, we then emphasize the case M?1 in which the relaxation times are widely separated. The loss spectrum then always has two major features: a frequency band 1?ωtd?M-1 within which the loss varies relatively weakly with ω; and a loss maximum at ωtdM-1 due to the slip viscosity. If corners on the interface are sufficiently rounded, those two universal features are separated by a third feature: between them, there is a strong minimum whose location is (entirely) independent of slip viscosity. The existence of that minimum has not previously been reported. These features are likely to occur even in solutions for finite interface slopes, because they are a consequence of the separation of timescales. The precise form of the spectrum in the weakly varying band must, however, be slope-dependent because it is controlled by stress singularities occurring at corners, and the strength of those singularities depends on the angle subtended by the corner.  相似文献   

10.
Starting from a Cauchy elastic composite with a dilute suspension of randomly distributed inclusions and characterized at first-order by a certain discrepancy tensor (see part I of the present article), it is shown that the equivalent second-gradient Mindlin elastic solid: (i) is positive definite only when the discrepancy tensor is negative defined; (ii) the non-local material symmetries are the same of the discrepancy tensor, and (iii) the non-local effective behaviour is affected by the shape of the RVE, which does not influence the first-order homogenized response. Furthermore, explicit derivations of non-local parameters from heterogeneous Cauchy elastic composites are obtained in the particular cases of: (a) circular cylindrical and spherical isotropic inclusions embedded in an isotropic matrix, (b) n-polygonal cylindrical voids in an isotropic matrix, and (c) circular cylindrical voids in an orthotropic matrix.  相似文献   

11.
Materials get damaged under shear deformations. Edge cracking is one of the most serious damage to the metal rolling industry, which is caused by the shear damage process and the evolution of anisotropy. To investigate the physics of the edge cracking process, simulations of a shear deformation for an orthotropic plastic material are performed. To perform the simulation, this paper proposes an elasto-aniso-plastic constitutive model that takes into account the evolution of the orthotropic axes by using a bases rotation formula, which is based upon the slip process in the plastic deformation. It is found through the shear simulation that the void can grow in shear deformations due to the evolution of anisotropy and that stress triaxiality in shear deformations of (induced) anisotropic metals can develop as high as in the uniaxial tension deformation of isotropic materials, which increases void volume. This echoes the same physics found through a crystal plasticity based damage model that porosity evolves due to the grain-to-grain interaction. The evolution of stress components, stress triaxiality and the direction of the orthotropic axes in shear deformations are discussed.  相似文献   

12.
Bueckner‘s work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials. The difficulties in separating Stroh‘s six complex arguments involved in the integral for the dissimilar materials are overcome and then the explicit function representations of the integral are given and studied in detail. It is found that the pseudo-orthogonal properties of the eigenfunction expansion form (EEF) for a crack presented previously in isotropic elastic cases, in isotopic bimaterial cases, and in orthotropic cases are also valid in the present dissimilar arbitrary anisotropic cases. The relation between Bueckner‘s work conjugate integral and the J-integral in these cases is obtained by introducing a complementary stressdisplacement state. Finally, some useful path-independent integrals and weight functions are proposed for calculating the crack tip parameters such as the stress intensity factors.  相似文献   

13.
This paper presents accurate elastic solutions for the rotating variable-thickness and/or uniform-thickness orthotropic circular cylinders. The present circular cylinder may contain a uniform-thickness solid core of rigid or homogeneously isotropic material. Different cases of rotating cylinders of various cores are investigated. These cylinders include completely isotropic solid cylinder, uniform-thickness orthotropic cylinder containing an isotropic core, variable-thickness orthotropic cylinder containing an isotropic core, uniform-thickness orthotropic cylinder containing a rigid core, and variable-thickness orthotropic cylinder containing a rigid core. For all cases studied, exact elastic solutions are obtained and numerical results are presented. The results include the radial, hoop, and axial stresses and radial displacement of the five cylinder configurations. The distributions of displacement and stresses through the radial direction of the rotating cylinder are obtained and comparisons between different cases are made at the same angular velocity.  相似文献   

14.
An analytical treatment is presented for the propagation of harmonic waves in magneto-electro-elastic multilayered plates, where the general anisotropic and three-phase coupled constitutive equations are used. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The global propagator matrix is obtained by propagating the solution in each layer from the bottom of the layered plate to the top using the continuity conditions of the field variables across the interfaces. From the global propagator matrix, we finally obtain the dispersion relation by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. Dispersion curves, modal shapes, and natural frequencies are presented for layered plates made of orthotropic elastic (graphite–epoxy), transversely isotropic PZT-5A, piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials. While the numerical results show clearly the influence of different stacking sequences as well as material properties on the field response, the general methodology presented in the paper could be useful to the analysis and design of layered composites made of smart piezoelectric and piezomagnetic materials.  相似文献   

15.
It has been known for some time that certain radial anisotropies in some linear elasticity problems can give rise to stress singularities which are absent in the corresponding isotropic problems. Recently related issues were examined by other authors in the context of plane strain axisymmetric deformations of a hollow circular cylindrically anisotropic linearly elastic cylinder under uniform external pressure, an anisotropic analog of the classic isotropic Lamé problem. In the isotropic case, as the external radius increases, the stresses rapidly approach those for a traction-free cavity in an infinite medium under remotely applied uniform compression. However, it has been shown that this does not occur when the cylinder is even slightly anisotropic. In this paper, we provide further elaboration on these issues. For the externally pressurized hollow cylinder (or disk), it is shown that for radially orthotropic materials, the maximum hoop stress occurs always on the inner boundary (as in the isotropic case) but that the stress concentration factor is infinite. For circumferentially orthotropic materials, if the tube is sufficiently thin, the maximum hoop stress always occurs on the inner boundary whereas for sufficiently thick tubes, the maximum hoop stress occurs at the outer boundary. For the case of an internally pressurized tube, the anisotropic problem does not give rise to such radical differences in stress behavior from the isotropic problem. Such differences do, however, arise in the problem of an anisotropic disk, in plane stress, rotating at a constant angular velocity about its center, as well as in the three-dimensional problem governing radially symmetric deformations of anisotropic externally pressurized hollow spheres. The anisotropies of concern here do arise in technological applications such as the processing of fiber composites as well as the casting of metals.  相似文献   

16.
The wave propagation approach is extended to study the frequency characteristics of thin rotating cylindrical shells. Based on Sanders’ shell theory, the governing equations of motion, which take into account the effects of centrifugal and Coriolis forces as well as the initial hoop tension due to rotation, are derived. And, the displacement field is expressed in the form of wave propagation associated with an axial wavenumber k m and circumferential wavenumber n. Using the wavenumber of an equivalent beam with similar boundary conditions as the cylindrical shell, the axial wavenumber k m is determined approximately. Then, the relation between the natural frequency with the axial wavenumber and circumferential wavenumber is established, and the traveling wave frequencies corresponding to a certain rotating speed are calculated numerically. To validate the results, comparisons are carried out with some available results of previous studies, and good agreements are observed. Finally, the relative errors induced by the approximation using the axial wavenumber of an equivalent beam are evaluated with respect to different circumferential wavenumbers, length-to-radius ratios as well as thickness-to-radius ratios, and the conditions under which the analysis presented in this paper will be accurate are discussed.  相似文献   

17.
This paper is concerned with an analysis of strain localization in ductile crystals deforming by single slip. The plastic flow is modelled as rate-insensitive, and localization, viewed as a bifurcation from a homogeneous deformation mode to one which is concentrated in a narrow ‘shear band’, is found to be possible only when the plastic hardening modulus for the slip system has fallen to a certain critical value hcr, sensitive to the precise form of the constitutive law governing incremental shear. We develop the general form of this constitutive law, incorporating within it the possibility of deviations from the Schmid rule of a critical resolved shear stress, and we show that hcr may in fact be positive when there are deviations from the Schmid rule. It is suggested that micromechanical processes such as ‘cross-slip’ in crystals provide specific cases for which stresses other than the Schmid stress may influence plastic response and, further, there is an experimental association of localization with the onset of large amounts of cross-slip. Thus, we give the specific form of hcr for a constitutive model that corresponds to non-Schmid effects in cross-slip, and we develop a dislocation model of the process from which we estimate the magnitude of the parameters involved. The work supports the notion that localization can occur with positive strain-hardening, hcr > 0, and the often invoked notions of the attainment of an ideally-plastic or strain-softening state for localization may be unnecessary.  相似文献   

18.
Supersonic responses of an anisotropic half-plane solid induced by a point load moving steadily on the half-plane boundary are investigated. Analytic expressions for the responses of the displacements and stresses for field points either inside or on the surface of the half-plane solid are given for general anisotropic materials. For the special cases of monoclinic materials with symmetry plane at x3=0 and orthotropic materials, the supersonic as well as subsonic responses of the displacements and stresses are further expressed explicitly in terms of elastic stiffnesses. Responses for the case of isotropic materials known in the literature are recoverable from present results.  相似文献   

19.
In this study, a bilinear cohesive zone model is employed to describe the transformation toughening behavior of a slowly propagating crack along an interface between a shape memory alloy and a linear elastic or elasto-plastic isotropic material. Small scale transformation zones and plane strain conditions are assumed. The crack growth is numerically simulated within a finite element scheme and its transformation toughening is obtained by means of resistance curves. It is found that the choice of the cohesive strength t0 and the stress intensity factor phase angle φ greatly influence the toughening behavior of the bimaterial. The presented methodology is generalized for the case of an interface crack between a fiber reinforced shape memory alloy composite and a linear elastic, isotropic material. The effect of the cohesive strength t0, as well as the fiber volume fraction are examined.  相似文献   

20.
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill’s yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic–plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic–plastic constitutive model is the introduction of anisotropic effect in the Mie–Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM’s version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie–Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \({\varvec{\psi }}\) tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic–plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and \({\mathrm {895\,ms}}^{\mathrm {-1}}\) impact velocities is performed. A good agreement is obtained in each test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号