首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over sparsely-spaced two-dimensional (2D) rod-roughened walls were performed. The rod elements were periodically arranged along the streamwise direction with pitches of px/k = 8, 16, 32, 64 and 128, where px is the streamwise spacing of the rods, and k is the roughness height. The Reynolds number based on the momentum thickness was varied from Reθ = 300–1400, and the height of the roughness element was k = 1.5θin, where θin is the momentum thickness at the inlet. The characteristics of the TBLs, such as the friction velocity, mean velocity, and Reynolds stresses over the rod-roughened walls, were examined by varying the spacing of the roughness features (8  px/k  128). The outer-layer similarity between the rough and smooth walls was established for the sparsely-distributed rough walls (px/k  32) based on the profiles of the Reynolds stresses, whereas those are not for px/k = 8 and 16. Inspection of the interaction between outer-layer large-scale motions and near-wall small-scale motions using two-point amplitude modulation (AM) covariance showed that modulation effect of large-scale motions on near-wall small-scale motions was strongly disturbed over the rough wall for px/k = 8 and 16. For px/k  32, the flow that passed through the upstream roughness element transitioned to a smooth wall flow between the consecutive rods. The strong influence of the surface roughness in the outer layer for px/k = 8 and 16 was attributed to large-scale erupting motions by the surface roughness, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region.  相似文献   

2.
Although the discharge flow of spherical materials has been extensively explored, the effect of particle shape on discharge is still poorly understood. The present work explores the two-dimensional discharge flow fields of noncircular particles using the soft-sphere-imbedded pseudo-hard particle model method. Rectangular particles having different aspect ratios (Ra = 1, 1.5, 2–5) and regular polygonal particles having different numbers of sides (Ns = 3–8, 10) are discharged through hopper beds having different orifice widths (Di = 40, 70.77, 99.13, 125.74, 151.13 mm). The discharge rates of differently shaped particles in different beds are consistent with Beverloo’s relation. Moreover, the flow fields are computed and evaluated to study the effects of Ra, Ns, and Di on particle discharge. The characteristics of particle–particle connections in the discharge process are evaluated according to the temporal evolution and spatial distribution of the contact points. Additionally, the effect of the initial packing on the discharge profile is investigated. The findings help clarify the discharge of noncircular particles.  相似文献   

3.
The motion of single Argon bubbles rising in the eutectic alloy GaInSn under the influence of a DC longitudinal magnetic field (parallel to the direction of bubble motion) was examined. The magnetic field strength was varied up to 0.3 T corresponding to a magnetic interaction parameter N (which measures the ratio of electromagnetic forces to inertial forces) slightly greater than 1. The liquid metal was at rest in a cylindrical container. Bubble and liquid velocities were measured using ultrasound Doppler velocimetry (UDV). The measured bubble terminal velocity showed oscillations indicating a zigzag movement of ellipsoidal bubbles. For small bubbles (de  4.6 mm) an increase of the drag coefficient with increasing magnetic interaction parameter N was observed, whereas for larger bubbles (de  5.4 mm) the application of the magnetic field reduces the drag coefficient. The measurements revealed a distinct electromagnetic damping of the bubble induced liquid velocity leading to more rectilinear bubble trajectories when the magnetic field is applied. Moreover, significant modifications of the bubble wake structure were observed. Raising of the magnetic field strength caused an enlargement of the eddies in the wake. The Strouhal number decreases with increasing magnetic interaction parameter N.  相似文献   

4.
A numerical study of the alteration of a square cylinder wake using a detached downstream thin flat plate is presented. The wake is generated by a uniform flow of Reynolds number 150 based on the side length of the cylinder, D. The sensitivity of the near wake structure to the downstream position of the plate is investigated by varying the gap distance (G) along the wake centerline in the range 0  G  7D for a constant plate length of L = D. A critical gap distance is observed to occur at Gc  2.3D that indicates the existence of two flow regimes. Regime I is characterised by vortex formation occurring downstream of the gap while for regime II, formation occurs within the gap. By varying the plate length and gap distance, a condition is found where significant unsteady total lift reduction can occur. The root mean square lift reduction is limited by an unsteady stall process on the plate.  相似文献   

5.
Tip gap flow characteristics and aerodynamic loss generations in a turbine cascade equipped with pressure-side partial squealer rims have been investigated with the variation of its rim height-to-span ratio (hp/s) for a tip gap height of h/s = 1.36%. The results show that the tip gap flow is characterized not only by the incoming leakage flow over the pressure-side squealer rim but also by the upstream flow intrusion behind the rim. The incoming leakage flow tends to decelerate through the divergent tip gap flow channel and can hardly reach the blade suction side upstream of the mid-chord, due to the interaction with the upstream flow intrusion as well as due to the flow deceleration. A tip gap flow model has been proposed for hp/s = 3.75%, and the effect of hp/s on the tip surface flow is discussed in detail. With increasing hp/s, the total-pressure loss coefficient mass-averaged all over the present measurement plane decreases steeply, has a minimum value for hp/s = 1.88%, and then increases gradually. Its maximum reduction with respect to the plane tip result is evaluated to be 11.6%, which is found not better than that in the cavity squealer tip case.  相似文献   

6.
The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, LU, which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, LCH, or by a constant turbulence on the centerline, with length LCT. The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has a length LCH which increases from LCH = H at Re = 35,300 to LCH = 45H at Re = 2200. The PIV measurements on the centerline of the jet show that turbulence remains constant at the level of the exit for a length, LCT, which increases from LCT = H at Re = 35,300 to LCT = 45H at Re = 2200. The PIV measurements show that velocity remains constant at the exit level for a length, LU, which increases from LU = H at Re = 35,300 to LU = 6H at Re = 2200 and is called undisturbed region of flow. In turbulent flow the length LU is almost equal to the lengths of the regions of constant height, LCH, and constant turbulence, LCT. In laminar flow, Re = 2200, the length of the undisturbed region of flow, LU, is greater than the lengths of the regions of constant height and turbulence, LCT = LCH = 45H. The average PIV and HFA velocity measurements confirm that the length of potential core, LP, increases from LP = 45H at Re = 35,300 to LP = 78H at Re = 2200, and are compared to the previous experimental and theoretical results of the literature in the zone of mixing fluid and in the fully developed region with a good agreement.  相似文献   

7.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

8.
Mars Exploration Rovers (MERs) experienced mobility problems during traverses. Three-dimensional discrete element method (DEM) simulations of MER wheel mobility tests for wheel slips of i = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 were done to examine high wheel slip mobility to improve the ARTEMIS MER traverse planning tool. Simulations of wheel drawbar pull and sinkage MIT data for i  0.5 were used to determine DEM particle packing density (0.62) and contact friction (0.8) to represent the simulant used in mobility tests. The DEM simulations are in good agreement with MIT data for i = 0.5 and 0.7, with reasonable but less agreement at lower wheel slip. Three mobility stages include low slip (i < 0.3) controlled by soil strength, intermediate slip (i  0.3–0.6) controlled by residual soil strength, and high slip (i > 0.6) controlled by residual soil strength and wheel sinkage depth. Equilibrium sinkage occurred for i < 0.9, but continuously increased for i = 0.99. Improved DEM simulation accuracy of low-slip mobility can be achieved using polyhedral particles, rather than tri-sphere particles, to represent soil. The DEM simulations of MER wheel mobility can improve ARTEMIS accuracy.  相似文献   

9.
The variations of mass concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31, 2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.5 with NO2: r = 0.256–0.688, mean r = 0.498; PM10 with NO2: r = 0.169–0.713, mean r = 0.493; PM2.5 with SO2: r = 0.232–0.693, mean r = 0.449; PM10 with SO2: r = 0.131–0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156–0.721, mean r = 0.437; PM10: r = 0.06–0.67, mean r = 0.380). The correlation between PMs and O3 was either weak or uncorrelated (PM2.5: r = −0.35 to 0.089, mean r = −0.164; PM10: r = −0.279 to 0.078, mean r = −0.127), except in Haikou (PM2.5: r = 0.500; PM10: r = 0.509).  相似文献   

10.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

11.
This paper presents Large Eddy Simulations (LES) of flow around a four-vehicle platoon when one of the platoon members was forced to undergo in-line oscillations. The LES were made at the Reynolds number of 105 based on the height of the vehicles. Combinations of two different frequencies corresponding to non-dimensional frequencies at the Strouhal numbers St1 = 0.025 and St2 = 0.013 and two oscillation amplitudes were used in this study. The methodology was validated by comparisons with data from previous experimental investigations. In order to highlight the dynamic effects, comparisons were made with steady results on a single vehicle and on a four-vehicle platoon. Large differences were found in the flow structures between quasi-steady and dynamic results. Furthermore, the behavior of the drag coefficient of the upstream neighbor of the oscillating model was investigated.  相似文献   

12.
By using the reciprocal theorem of elasticity, the author obtained the appropriate stress boundary conditions for the Levy solution for plate bending accurate to all order for plates of general edge geometry and loading. Two special cases of k = 0 (axisymmetric deformation of a circular plate) and k  2 (unsymmetric deformation of a circular plate) were discussed in detail in the paper.  相似文献   

13.
Results showing the dynamic response of a vertical long flexible cylinder vibrating at low mode numbers are presented in this paper. The model had an external diameter of 16 mm and a total length of 1.5 m giving an aspect ratio of about 94, with Reynolds numbers between 1200 and 12 000. Only the lower 40% of its length was exposed to the water current in the flume and applied top tensions varied from 15 to 110 N giving fundamental natural frequencies in the range from 3.0 to 7.1 Hz. Reduced velocities based on the fundamental natural frequency up to 16 were reached. The mass ratio was 1.8 and the combined mass–damping parameter about 0.05. Cross-flow and in-line amplitudes, xy trajectories and phase synchronisation, dominant frequencies and modal amplitudes are reported. Cross-flow amplitudes up to 0.7 diameters and in-line amplitudes over 0.2 were observed with dominant frequencies given by a Strouhal number of 0.16.  相似文献   

14.
Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number, Reτ, and Weissenberg number, Weτ and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0  %DR  20), high drag reduction (HDR; 20  %DR  52) and MDR (52  %DR  74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.  相似文献   

15.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re = 100, 250 and 300, non-dimensional rotational rates Ω1 = 0–1 and rotation axis angles α = 0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx, CLy) and (CD, CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re = 300 and Ω1 = 0.05, the phase diagrams (CLx, CLy) show ‘saw tooth’ patterns for both α = 0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re  800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω1 increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.  相似文献   

16.
A continuous dichotomous beta gauge monitor was used to characterize the hourly content of PM2.5, PM10–2.5, and Black Carbon (BC) over a 12-month period in an urban street canyon of Hong Kong. Hourly vehicle counts for nine vehicle classes and meteorological data were also recorded. The average weekly cycles of PM2.5, PM10–2.5, and BC suggested that all species are related to traffic, with high concentrations on workdays and low concentrations over the weekends. PM2.5 exhibited two comparable concentrations at 10:00–11:00 (63.4 μg/m3) and 17:00–18:00 (65.0 μg/m3) local time (LT) during workdays, corresponding to the hours when the numbers of diesel-fueled and gasoline-fueled vehicles were at their maximum levels: 3179 and 2907 h−1, respectively. BC is emitted mainly by diesel-fueled vehicles and this showed the highest concentration (31.2 μg/m3) during the midday period (10:00–11:00 LT) on workdays. A poor correlation was found between PM2.5 concentration and wind speed (R = 0.51, P-value > 0.001). In contrast, the concentration of PM10–2.5 was found to depend upon wind speed and it increased with obvious statistical significance as wind speed increased (R = 0.98, P-value < 0.0001).  相似文献   

17.
This paper reports on the experimental examination of the deformation characteristics near a crack tip in a cyclically work-hardened copper single crystal using a 2D surface scans with nano-indentation. The experimental methodology enables the characterization of the primary deformation field near a crack tip via the modulation of the imposed secondary deformation field by a nano-indentation. In a heavily deformed 4-point bend specimen, the measurements showed an existence of an asymptotic field around the crack tip at a distance of R  2.5J/σ0. The measurements also showed the qualitative details of toughness evolution within the high-gradient deformation field around the crack tip. The nature of dislocation distribution (i.e. statistically distributed vs. distributions necessitated by geometry) around the crack tip is quantified. The measurements indicate the dominance of the geometrically necessary dislocation within the finite deformation zone ahead of the tip up to a distance of R  3J/σ0. Thereafter, it is confined in radial rays coinciding with the sector boundaries around the crack tip. These measurements elucidate the origin of the inhomogeneous hardening and the size dependent macroscopic response close to crack tip.  相似文献   

18.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

19.
Heat-transfer characteristics of climbing film evaporation were experimentally investigated on a vertical climbing film evaporator heated by tube-outside hot water. The experimental setup was designed for determining the effect of the height of feed water inside a vertical tube and the range of temperature difference on local heat transfer coefficient inside a vertical tube (hi). In this setup, the height of feed water was successfully controlled and the polypropylene shell effectively impedes the heat loss to the ground. The results indicated that a reduction in the height of feed water contributed to a significant increase in hi if no dry patches around the wall of the heated tube appeared inside the tube. The height ratio of feed water Rh = 0.3 was proposed as the optimal one as dry patches destroyed the continuous climbing film when Rh is under 0.3. It was found that the minimum temperature difference driving climbing film evaporation is suggested as 5 °C due to a sharp reduction in hi for temperature difference below 5 °C. The experiment also showed that hi increased with an increase in temperature difference, which proved the superiority of climbing film evaporation in utilizing low-grade surplus heating source due to its wide range of driving temperature difference. The experimental results were compared with the previous literature and demonstrated a satisfactory agreement.  相似文献   

20.
The mean wake of a surface-mounted finite-height square prism was studied experimentally in a low-speed wind tunnel to explore the combined effects of incidence angle (α) and aspect ratio (AR). Measurements of the mean wake velocity field were made with a seven-hole pressure probe for finite square prisms of AR = 9, 7, 5 and 3, at a Reynolds number of Re = 3.7 × 104, for incidence angles from α = 0° to 45°. The relative thickness of the boundary layer on the ground plane, compared to the prism width, was δ/D = 1.5. As the incidence angle increases from α = 0° to 15°, the mean recirculation zone shortens and the mean wake shifts in the direction opposite to that of the mean lift force. The downwash is also deflected to this side of the wake and the mean streamwise vortex structures in the upper part of the wake become strongly asymmetric. The shortest mean recirculation zone, and the greatest asymmetry in the mean wake, is found at the critical incidence angle of αcritical  15°. As the incidence angle increases from α = 15° to 45°, the mean recirculation zone lengthens and the mean streamwise vortex structures regain their symmetry. These vortices also elongate in the wall-normal direction and become contiguous with the horseshoe vortex trailing arms. The mean wake of the prism of AR = 3 has some differences, such as an absence of induced streamwise vorticity near the ground plane, which support its classification as lying below the critical aspect ratio for the present flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号