首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The focus of this investigation is to study the mechanics of the human knee using a new method that integrates multibody system and large deformation finite element algorithms. The major bones in the knee joint consisting of the femur, tibia, and fibula are modeled as rigid bodies. The ligaments structures are modeled using the large displacement finite element absolute nodal coordinate formulation (ANCF) with an implementation of a Neo-Hookean constitutive model that allows for large change in the configuration as experienced in knee flexion, extension, and rotation. The Neo-Hookean strain energy function used in this study takes into consideration the near incompressibility of the ligaments. The ANCF is used in the formulation of the algebraic equations that define the ligament/bone rigid connection. A unique feature of the ANCF model developed in this investigation is that it captures the deformation of the ligament cross section using structural finite elements such as beams. At the ligament/bone insertion site, the ANCF is used to define a fully constrained joint. This model will reflect the fact that the geometry, placement and attachment of the two collateral ligaments (the LCL and MCL), are significantly different from what has been used in most knee models developed in previous investigations. The approach described in this paper will provide a more realistic model of the knee and thus more applicable to future research studies on ligaments, muscles and soft tissues (LMST). Current finite element models are limited due to simplified assumptions for the spatial and time dependent material properties inherent in the anisotropic and anatomic constraints associated with joint stability, and the static conditions inherent in the analysis. The ANCF analysis is not limited to static conditions and results in a fully dynamic model that accounts for the distributed inertia and elasticity of the ligaments. The results obtained in this investigation show that the ANCF finite elements can be an effective tool for modeling very flexible structures like ligaments subjected to large flexion and extension. In the future, the more realistic ANCF models could assist in examining the mechanics of the knee to study knee injuries and possible prevention means, as well as an improved understanding of the role of each individual ligament in the diagnosis and assessment of disease states, aging and potential therapies.  相似文献   

3.
Industrial epidemiological studies have shown that jobs requiring a higher speed of trunk motion contribute to a higher risk of industrial low back disorders. Consideration of the loading dynamic characteristics, such as lifting at different speeds, requires modeling of the viscoelastic behavior of passive tissues. Detailed systematic analysis of the effects of loading rate has been lacking in the literature. A validated viscoelastic finite element model of a L2–L3 motion segment was used to identify the load sharing among the passive elements at different loading rates. Force controlled complex flexion movement was simulated by applying load at the top of the upper vertebra without constraining any coupled sagittal rotation, whereas the lower vertebra was fixed at the bottom. The load reached its maximum values of 2000 N compression, 400 N anterior shear, and 20 Nm flexion in three different durations of 0.3, 3 and 30 s to represent fast, medium and slow movement. The global force–displacement response of the motion segment, forces in facet joints and ligaments, stresses and strains in anulus fibrosus, and intradiscal pressure were compared across different rates. The higher rate of loading while reaching a prescribed complex forward flexion loading increased the intradiscal pressure and the stress in the anulus fibers at the posterolateral innermost layers, but reduced the global displacements, ligament forces and facet joint forces. The distribution of stress and strain was markedly affected by the loading rate. Consideration of the time-dependent material properties of passive elements is essential to improve our understanding of the responses of the motion segment to dynamic loading conditions. Speed of the manual materials handling (MMH) tasks should be included as a risk factor in the biomechanical and epidemiological studies and guidelines for safe lifting.  相似文献   

4.
A nonlinear Zener model is developed to model the viscoelastic behavior of collagen fibers, a building block of the biological soft tissues in the skeletal system. The effects of the strain rate dependency, the loading history, rest, and recovery on the stress-strain relationship of collagen fibers were investigated using the Zener model. The following loading conditions were simulated: (1) the stress relaxation after cyclic loading, (2) the constant strain rate loading before and after cyclic loading (stabilization) and post recovery, and (3) the constant strain rate loading over a wide range of loading rates. In addition, we explored the critical values of stress and strain using different failure criteria at different strain rates. Four major findings were derived from these simulations. First of all, the stress relaxation is larger with a smaller number cycles of preloading. Second, the strain rate sensitivity diminishes after the stabilization and recovery from resting. Third, the stress-strain curve is dependent on the strain rate except for extreme loading conditions (very fast or slow rates of loading). Finally, the strain energy density (SED) criteria may be a more practical failure criterion than the ultimate stress or strain criterion for collagen fiber. These results provide the basis for interpretation of the viscoelastic and failure behaviors of complex structures such as spinal functional units with more economical CPU than full finite element modeling of the whole structure would have required.  相似文献   

5.
Creep and stress relaxation are known to be interrelated in linearly viscoelastic materials by an exact analytical expression. In this article, analytical interrelations are derived for nonlinearly viscoelastic materials which obey a single integral nonlinear superposition constitutive equation. The kernel is not assumed to be separable as a product of strain and time dependent parts. Superposition is fully taken into account within the single integral formulation used. Specific formulations based on power law time dependence and truncated expansions are developed. These are appropriate for weak stress and strain dependence. The interrelated constitutive formulation is applied to ligaments, in which stiffness increases with strain, stress relaxation proceeds faster than creep, and rate of creep is a function of stress and rate of relaxation is a function of strain. An interrelation was also constructed for a commercial die-cast aluminum alloy currently used in small engine applications.  相似文献   

6.
姚杰  樊瑜波  张明  李德玉  宫赫 《力学学报》2010,42(1):102-108
前交叉韧带(anterior cruciate ligament, ACL)损伤往往会导致半月板及周边韧带的继发性损伤. 由于离体实验和临床研究的局限性,损伤的机理仍未得到清晰的认识. 基于核磁共振断层扫面图像重建了一个比较完整和精确的膝关节三维有限元模型. 采用文献报道的解剖测量数据对关节的解剖尺寸进行了检验,证明模型在几何上比较准确. 并且对文献报道的膝关节实验作了模拟,得出的计算结果与实验比较吻合,证明模型能够在一定程度上再现膝关节真实的运动情况. 然后利用该模型对ACL损伤前后的膝关节进行模拟,分别在屈膝0$^\circ$和30$^\circ$的姿态下对胫骨施加前后方向和竖直方向的载荷. 结果表明, ACL的损伤改变了关节组织上的应力分布:内侧半月板后段的应力显著增加;外侧半月板、后交叉韧带以及侧副韧带上的应力改变程度则取决于载荷的类型和屈膝的角度. 该研究有助于认识ACL损伤之后周边组织的继发性损伤现象,并对容易诱发损伤的高危动作进行分析和预防,对研究ACL的损伤和治疗具有重要的意义.   相似文献   

7.
The emerging ultralightweight material, carbon foam, was modeled with three-dimensional microstructures to develop a basic understanding in correlating microstructural configuration with bulk performance of open-cell foam materials. Because of the randomness and complexity of the microstructure of the carbon foam, representative cell ligaments were first characterized in detail at the microstructural level. The salient microstructural characteristics (or properties) were then correlated with the bulk properties through the present model. In order to implement the varying anisotropic nature of material properties in the foam ligaments, we made an attempt to use a finite element method to implement such variation along the ligaments as well as at a nodal point where the ligaments meet. The model was expected to provide a basis for establishing a process-property relationship and optimizing foam properties.The present model yielded a fairly reasonable prediction of the effective bulk properties of the foams. We observed that the effective elastic properties of the foams were dominated by the bending mode associated with shear deformation. The effective Young's modulus of the foam was strongly influenced by the ligament moduli, but was not influenced by the ligament Poisson's ratio. The effective Poisson's ratio of the foam was practically independent of the ligament Young's modulus, but dependent on the ligament Poisson's ratio. The effective Young's modulus of the carbon foam was dependent more on the transverse Young's modulus and the shear moduli of the foam ligaments, but less significantly on the ligament longitudinal Young's modulus. A parametric study indicated that the effective Young's modulus was significantly improved by increasing the solid modulus in the middle of the foam ligaments, but nearly invariant with that at the nodal point where the ligaments meet. Therefore, appropriate processing schemes toward improving the transverse and shear properties of the foam ligaments in the middle section of the ligaments rather than at the nodal points are highly desirable for enhancing the bulk moduli of the carbon foam.  相似文献   

8.
The paper addresses, with reference to the 3-parameter fluid, a method to extend constitutive laws for viscoelastic fluids from small to finite deformations. It relies upon the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic parts. Also care is taken that the second law of thermodynamics is satisfied in every admissible process. To demonstrate the capabilities of the model obtained, simple shear and uniaxial extensional flow are discussed. It turns out that essential effects of material behaviour, which have been observed experimentally, can be predicted by the model.  相似文献   

9.
10.
This paper explores growth induced morphological instabilities in biological soft materials.In view of that the growth of a living tissue not only changes its geometry but also can alter its mechanical properties,we suggest a refined volumetric growth model incorporating the effects of growth on the mechanical properties of materials.Analogy between this volumetric growth model and the conventional thermal stress model is addressed for both small and finite deformation problems,which brings great ease for the finite element analysis based on the suggested model.Examples of growth induced surface wrinkling behavior in soft composites,including coreshell soft cylinders and three-layered soft tissues,are explored.The results and discussions foresee possible applications of the model in understanding the correlation between the morphogenesis and growth of soft biological tissues(e.g.skins and tumors),as well as in evaluating the deformation and surface instability behavior of soft artificial materials induced by swelling/shrinkage.  相似文献   

11.
12.
多孔硅橡胶有限变形的粘弹性行为   总被引:3,自引:0,他引:3  
针对孔隙度较大(孔隙度大于50%)的硅橡胶材料在有限变形时的粘弹性行为,从建立描述材料粘弹性特征的松驰函数和变形特征的应变能函数出发,提出了适合多孔隙、可压硅橡胶材料的非线性粘弹性力学行为的本构关系,松驰函数和应变能函数可解耦为等容和体积变形两部分,并引入了拟时间的概念来反映变形对材料特征时间的影响,利用硅橡胶材料的单轴压缩松驰实验与材料模型进行了对比,讨论了多孔硅橡胶的等容变形和体积变形对应力松驰的影响。  相似文献   

13.
A set of three-dimensional constitutive equations is proposed for modeling the nonlinear dissipative response of soft tissue. These constitutive equations are phenomenological in nature and they model a number of physical features that have been observed in soft tissue. The equations model the tissue as a composite of a purely elastic component and a dissipative component, both of which experience the same total dilatation and distortion. The stress response of the purely elastic component depends on dilatation, distortion and the stretch of material fibers, whereas the stress response of the dissipative component depends on distortional deformation only. The equations are hyperelastic in the sense that the stress is obtained by derivatives of a strain energy function, and they are properly invariant under superposed rigid body motions. In contrast with standard viscoelastic models of tissues, the proposed constitutive model includes the total deformation rate in evolution equations that can reproduce the observed physical feature that the hysteresis loops of most biological soft tissues are nearly independent of strain rate (Biomechanics, Mechanical Properties of Living Tissues, second ed. (1993)). Material constants are determined which produce good agreement with uniaxial stress experiments on superficial musculoaponeurotic system and facial skin.  相似文献   

14.
制备了颗粒规则四方排列和六方排列的橡胶粘接颗粒材料试样,实验测试了所制备试样在单向拉伸载荷下的应力松弛曲线和不同应变率时的应力应变曲线。基于所测试的应力松弛曲线,采用曲线拟合方法得到了所测试材料的宏观Burger’s粘弹性本构模型参数。采用离散元模型中单元间连结模型代表颗粒间橡胶粘接剂的作用,并基于试样的宏观Burger’s模型参数与离散元模型中细观Burger’s连结模型参数间的关系,建立了橡胶粘接颗粒材料的无厚度胶结离散元分析模型。最后采用所建立的离散元模型计算了所测试试样的松弛和拉伸力学性能。离散元预测结果与实验结果的对比表明,采用无厚度胶结离散元模型能较好的计算颗粒规则排列的橡胶粘接颗粒材料松弛和拉伸力学性能,但基于应力松弛实验拟合而来参数不能准确反应橡胶粘接剂在高应变率条件下其力学性能的应变率相关性。  相似文献   

15.
An experimental study is undertaken to examine the dynamic stress–strain characteristics of ligaments from the human cervical spine (neck). Tests were conducted using a tensile split Hopkinson bar device and the engineering strain rates imposed were of the order of 102∼103/s. As ligaments are extremely soft and pliable, specialized test protocols applicable to Hopkinson bar testing were developed to facilitate acquisition of reliable and accurate data. Seven primary ligaments types from the cervical spines of three male cadavers were subjected to mechanical tests. These yielded dynamic stress–strain curves which could be approximated by empirical equations. The dynamic failure stress/load, failure stain/deformation, modulus/stiffness, as well as energy absorption capacity, were obtained for the various ligaments and classified according to their location, the strain rate imposed and the cadaveric source. Compared with static responses, the overall average dynamic stress–strain behavior foreach type of ligament exhibited an elevation in strength but reduced elongation.  相似文献   

16.
The stress response of amorphous polymers exhibits tremendous change during the glass transition region, from soft viscoelastic response to stiff viscoplastic response. In order to describe the temperature-dependent and rate-dependent stress response of amorphous polymers, we extend the one-dimensional small strain fractional Zener model to the three-dimensional finite deformation model. The Eyring model is adopted to represent the stress-activated viscous flow. A phenomenological evolution equation of yield strength is used to describe the strain softening behaviors. We demonstrate that the stress response predicted by the three-dimensional model is consistent with that of one-dimensional model under uniaxial deformation, which confirms the validity of the extension. The model is then applied to describe the stress response of an amorphous thermoset at various temperatures and strain rates, which shows good agreement between experiments and simulation. We further perform a parameter study to investigate the influence of the model parameters on the stress response. The results show that a smaller fractional order results in a larger yield strain while has little effect on the yield stress when the temperature is below the glass transition temperature. For the stress relaxation tests, a smaller fractional order leads to a slower relaxation rate.  相似文献   

17.
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.  相似文献   

18.
It is in general challenging to characterize planar mechanical properties of extremely soft tissues such as cell-seeded collagen gels. One of the difficulties is related to premature failure of specimens. This issue may be resolved by employing fillets on stress-concentrated spots of the specimen. The existence of fillets, however, complicates the estimation of stress at the center of the specimen where stiffness data are collected. In this study, cruciform rubber specimens with two types of fillets (general vs. cut-in fillets) at the intersections of perpendicular arms were prepared and subjected to planar biaxial mechanical testing, aiming at investigating how the fillets affect the estimation of mechanical properties of cruciform specimens. Digital image correlation was used to analyze full-field deformation in the central region of the specimens. Finite element analysis with a Neo-Hookean model was performed to simulate the full-field deformation under the same experimental boundary conditions. The strain distribution for each specimen geometry obtained by finite element analysis was found to be in good agreement with that analyzed by digital image correlation, validating the finite element models. Finite element simulation showed that the greatest value of the maximum principal strain decreased with increasing the fillet radius regardless of the fillet type. Increasing the fillet radius, in general, also reduced the strain field uniformity in the central region. Compared with general fillets, however, the use of cut-in fillets provided greater strain field uniformity given the same fillet radius. Finite element analysis was also used to estimate effective transverse length required to convert tensile force at the boundary to local stress at the center. It was found that the effective transverse length for each specimen geometry remained relatively constant if the specimen was not excessively deformed (i.e., global equibiaxial stretch ≤ 1.2). We suggest using cut-in fillets at the intersections of perpendicular arms when preparing cruciform specimens for testing extremely soft tissues.  相似文献   

19.
Collagen is the main structural protein in vertebrate biology, determining the mechanical behavior of connective tissues such as tendon, bone and skin. Although extensive efforts in the study of the origin of collagen exceptional mechanical properties, a deep knowledge of the relationship between molecular structure and mechanical properties remains elusive, hindered by the complex hierarchical structure of collagen-based tissues. Understanding the viscoelastic behavior of collagenous tissues requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar and molecular level. Hence, we investigate the viscoelastic properties at the molecular level by using an atomistic modeling approach, performing in silico creep tests of a collagen-like peptide. The results are compared with creep and relaxation tests at the level of isolated collagen fibrils performed previously using a micro-electro-mechanical systems platform. Individual collagen molecules present a non-linear viscoelastic behavior, with a Young's modulus increasing from 6 to 16 GPa (for strains up to 20%), a viscosity of 3.84±0.38 Pa s, and a relaxation time in the range of 0.24–0.64 ns. At the fibrils level, stress–strain–time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell–Weichert model. The fibrils showed an elastic modulus of 123±46 MPa. The time-dependent behavior was well fit using the two-time-constant Maxwell–Weichert model with a fast time response of 7±2 s and a slow time response of 102±5 s.  相似文献   

20.
In this work we propose an anisotropic stored energy function which satisfies a priori the Legendre–Hadamard condition, which is strongly related to the material stability of the constitutive equations. In the linearized case this condition implies positive wave speeds. The Legendre–Hadamard condition plays also an important role for the (local) existence of solutions in the neighborhood of stationary points. We apply the proposed hyperelastic energies to soft tissues and compare the formulation with existing models which have been used for the calculation of medial collateral ligament and arterial walls. In our numerical and analytical investigations we discuss the distribution of wave speeds for a sequence of deformation states containing some essential stress–strain characteristics of the compared models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号