首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

2.
The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.  相似文献   

3.
A gradient elastic material model exhibiting gradient kinematic and isotropic hardening is addressed within a thermodynamic framework suitable to cope with nonlocal-type continua. The Clausius–Duhem inequality is used, in conjunction with the concepts of energy residual, insulation condition and locality recovery condition, to derive all the pertinent restrictions upon the constitutive equations, including the PDEs and the related higher order (HO) boundary conditions that govern the gradient material behaviour. Through a suitable limiting procedure, the HO boundary conditions are shown to interpret the action, upon the body's boundary surface, of idealized extra HO constraints capable to impede the onset of strain as a nonlocality source and to react with a double traction (of dimension moment/area), work-conjugate of the impeded strain. The HO boundary conditions for the internal moving elastic/plastic boundary are also provided. A number of variational principles are proved. A few simple illustrative numerical examples are worked out.  相似文献   

4.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

5.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

6.
A Phenomenological Mesoscopic Field Dislocation Mechanics (PMFDM) model is developed, extending continuum plasticity theory for studying initial-boundary value problems of small-scale plasticity. PMFDM results from an elementary space-time averaging of the equations of Field Dislocation Mechanics (FDM), followed by a closure assumption from any strain-gradient plasticity model that attempts to account for effects of geometrically necessary dislocations (GNDs) only in work hardening. The specific lower-order gradient plasticity model chosen to substantiate this work requires one additional material parameter compared to its conventional continuum plasticity counterpart. The further addition of dislocation mechanics requires no additional material parameters. The model (a) retains the constitutive dependence of the free-energy only on elastic strain as in conventional continuum plasticity with no explicit dependence on dislocation density, (b) does not require higher-order stresses, and (c) does not require a constitutive specification of a ‘back-stress’ in the expression for average dislocation velocity/plastic strain rate. However, long-range stress effects of average dislocation distributions are predicted by the model in a mechanistically rigorous sense. Plausible boundary conditions (with obvious implication for corresponding interface conditions) are discussed in some detail from a physical point of view. Energetic and dissipative aspects of the model are also discussed. The developed framework is a continuous-time model of averaged dislocation plasticity, without having to rely on the notion of incremental work functions, their convexity properties, or their minimization. The tangent modulus relating stress rate and total strain rate in the model is the positive-definite tensor of linear elasticity, and this is not an impediment to the development of idealized microstructure in the theory and computations, even when such a convexity property is preserved in a computational scheme. A model of finite deformation, mesoscopic single crystal plasticity is also presented, motivated by the above considerations.Lower-order gradient plasticity appears as a constitutive limit of PMFDM, and the development suggests a plausible boundary condition on the plastic strain rate for this limit that is appropriate for the modeling of constrained plastic flow in three-dimensional situations.  相似文献   

7.
The constitutive relations of a theory of thermo-visco-elastic-plastic continuum have been formulated in Lagrangian form. The Lagrangian strains, strain rates, temperature, temperature rate and temperature gradients are considered as the independent constitutive variables. Three internal state variables (plastic strain tensor, back strain tensor and a scalar hardening parameter) are also incorporated. The axioms of objectivity and equipresence are followed. The Clausius–Duhem inequality is taken as the second law of thermodynamics. Several special theories are deduced based on material symmetries and/or conventionally adopted assumptions. The applications to the formation of shear bands and dynamic crack propagation are discussed.  相似文献   

8.
A finite strain hyper elasto-plastic constitutive model capable to describe non-linear kinematic hardening as well as non-linear isotropic hardening is presented. In addition to the intermediate configuration and in order to model kinematic hardening, an additional configuration is introduced – the center configuration; both configurations are chosen to be isoclinic. The yield condition is formulated in terms of the Mandel stress and a back-stress with a structure similar to the Mandel stress.It is shown that the non-dissipative part of the plastic velocity gradient not governed by the thermodynamical framework and the corresponding quantity associated with the kinematic hardening influence the material behaviour to a large extent when kinematic hardening is present. However, for isotropic elasticity and isotropic hardening plasticity it is shown that the non-dissipative quantities have no influence upon the stress–strain relation.As an example, kinematic hardening von Mises plasticity is considered, which fulfils the plastic incompressibility condition and is independent of the hydrostatic pressure. To evaluate the response and to examine the influence of the non-dissipative quantities, simple shear is considered; no stress oscillations occur.  相似文献   

9.
A thermomechanical framework for the modelling of gradient plasticity is developed within the range of linear strains. Full anisotropy is considered. Special focus is given to the restrictions imposed by the Clausius–Duhem inequality. A rather general example gives a complete anisotropic model and shows its thermodynamic consistency. This is finally particularized for the isotropic case by using isotropic tensor-function representations.  相似文献   

10.
A coupled temperature and strain rate microstructure physically based yield function is proposed in this work. It is incorporated along with the Clausius–Duhem inequality and an appropriate free energy definition in a general thermodynamic framework for deriving a three-dimensional kinematical model for thermo-viscoplastic deformations of body centered cubic (bcc) metals. The evolution equations are expressed in terms of the material time derivatives of the elastic strain, accumulated plastic strain (isotropic hardening), and the back stress conjugate tensor (kinematic hardening). The viscoplastic multipliers are obtained using both the Consistency and Perzyna viscoplasticity models. The athermal yield function is employed instead of the static yield function in the case of the Perzyna viscoplasticity model. It is found that the static strain rate value, at which the material shows rate-independent behavior, varies with the material deformation temperature. Computational aspects of the proposed model are addressed through the finite element implementation with an implicit stress integration algorithm. Finite element simulations are performed by implementing the proposed viscoplasticity constitutive models in the commercial finite element program ABAQUS/Explicit [ABAQUS, 2003. User Manual, Version 6.3. Habbitt, Karlsson and Sorensen Inc., Providence, RI] via the user material subroutine coded as VUMAT. Numerical implementation for a simple compression problem meshed with one element is used to validate the proposed model implementation with applications to tantalum, niobium, and vanadium at low and high strain rates and temperatures. The analysis of a tensile shear banding is also investigated to show the effectiveness and the performance of the proposed framework in describing the strain localizations at high velocity impact. Results show mesh independency as a result of the viscoplastic regularization used in the proposed formulation.  相似文献   

11.
Within the framework of linear plasticity, based on additive decomposition of the linear strain tensor, kinematical hardening can be described by means of extended potentials. The method is elegant and avoids the need for evolution equations. The extension of small strain formulations to the finite strain case, which is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, proved not straight forward. Specifically, the symmetry of the resulting back stress remained elusive. In this paper, a free energy-based formulation incorporating the effect of kinematic hardening is proposed. The formulation is able to reproduce symmetric expressions for the back stress while incorporating the multiplicative decomposition of the deformation gradient. Kinematic hardening is combined with isotropic hardening where an associative flow rule and von Mises yield criterion are applied. It is shown that the symmetry of the back stress is strongly related to its treatment as a truly spatial tensor, where contraction operations are to be conducted using the current metric. The latter depends naturally on the deformation gradient itself. Various numerical examples are presented.  相似文献   

12.
Strain gradient plasticity for finite deformations is addressed within the framework of nonlocal continuum thermodynamics, featured by the concepts of (nonlocality) energy residual and globally simple material. The plastic strain gradient is assumed to be physically meaningful in the domain of particle isoclinic configurations (with the director vector triad constant both in space and time), whereas the objective notion of corotational gradient makes it possible to compute the plastic strain gradient in any domain of particle intermediate configurations. A phenomenological elastic–plastic constitutive model is presented, with mixed kinematic/isotropic hardening laws in the form of PDEs and related higher order boundary conditions (including those associated with the moving elastic/plastic boundary). Two fourth-order projection tensor operators, functions of the elastic and plastic strain states, are shown to relate the skew-symmetric parts of the Mandel stress and back stress to the related symmetric parts. Consistent with the thermodynamic restrictions therein derived, the flow laws for rate-independent associative plasticity are formulated in a six-dimensional tensor space in terms of symmetric parts of Mandel stresses and related work-conjugate generalized plastic strain rates. A simple shear problem application is presented for illustrative purposes.  相似文献   

13.
The paper discusses the derivation and the numerical implementation of a finite strain material model for plastic anisotropy and nonlinear kinematic and isotropic hardening. The model is derived from a thermodynamic framework and is based on the multiplicative split of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong–Frederick kinematic hardening. Introducing the so-called structure tensors as additional tensor-valued arguments, plastic anisotropy can be modelled by representing the yield surface and the plastic flow rule as functions of the structure tensors. The evolution equations are integrated by a new form of the exponential map that preserves plastic incompressibility and uses the spectral decomposition to evaluate the exponential tensor functions in closed form. Finally, the applicability of the model is demonstrated by means of simulations of several deep drawing processes and comparisons with experiments.  相似文献   

14.
15.
Size-effects on yield surfaces for micro reinforced composites   总被引:1,自引:0,他引:1  
Size effects in heterogeneous materials are studied using a rate independent higher order strain gradient plasticity theory, where strain gradient effects are incorporated in the free energy of the material. Numerical studies are carried out using a finite element method, where the components of the plastic strain tensor appear as free variables in addition to the displacement variables. Non-conventional boundary conditions are applied at material interfaces to model a constraint on plastic flow due to dislocation blocking. Unit cell calculations are carried out under generalized plane strain conditions. The homogenized response of a material with cylindrical reinforcing fibers is analyzed for different values of the internal material length scale and homogenized yield surfaces are presented. While the main focus is on initial yield surfaces, subsequent yield surfaces are also presented. The center of the yield surface is tracked under uniaxial loading both in the transverse and longitudinal directions and an anisotropic Bauschinger effect is shown to depend on the size of the fibers. Results are compared to conventional predictions, and size-effects on the kinematic hardening are accentuated.  相似文献   

16.
Cyclic plasticity experiments were conducted on a pure polycrystalline copper and the material was found to display significant cyclic hardening and nonproportional hardening. An effort was made to describe the cyclic plasticity behavior of the material. The model is based on the framework using a yield surface together with the Armstrong–Frederick type kinematic hardening rule. No isotropic hardening is considered and the yield stress is assumed to be a constant. The backstress is decomposed into additive parts with each part following the Armstrong–Frederick type hardening rule. A memory surface in the plastic strain space is used to account for the strain range effect. The Tanaka fourth order tensor is used to characterize nonproportional loading. A set of material parameters in the hardening rules are related to the strain memory surface size and they are used to capture the strain range effect and the dependence of cyclic hardening and nonproportional hardening on the loading magnitude. The constitutive model can describe well the transient behavior during cyclic hardening and nonproportional hardening of the polycrystalline copper. Modeling of long-term ratcheting deformation is a difficult task and further investigations are required.  相似文献   

17.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

18.
A strain space plasticity theory based on the nonlinear kinematic hardening and softening rule is developed in order to accommodate work-hardening, work-softening, and elastic-perfectly plastic materials with one set of constitutive equations, and to facilitate strain controlled calculations. A generalized hardening/softening parameter is proposed, and the potential of linking the parameter to micro-mechanical material changes is discussed. The theory is used to investigate work-softening materials numerically and highlights a need for additional experimental results in this area.  相似文献   

19.
一般加载规律的弹塑性本构关系   总被引:1,自引:1,他引:0  
将有关文献给出一般加载规律一维全量理论的简单模型推广到一般加载规律的一维增量理论,进而推广到一般加载规律的多维增量理论,在此基础上,建立了推导一般加载规律的多维增量理论的本构关系的一种途径。应用这种途径,从应力空间的加载函数和应变空间的加载函数出发,推导了等向强化材料和被加热的等向强化材料的一般加载规律的弹塑性本构关系的两种表示形式。理论和实例均表明,这种途径对等向强化材料、随动强化材料和理想弹塑性材料均适用。  相似文献   

20.
It is shown in this paper that an extended form of Hills quadratic yield criterion for anisotropic sheet metal can be derived from an endochronic theory of plasticity. The extended form considers the combined isotropic–kinematic hardening and the anomalous behavior observed in the anisotropic plastic behavior of sheet metals can be accounted for by the concept of kinematic hardening.This form of anisotropic endochronic theory can accommodate the usual requirement of normality between the plastic strain rate and the yield function. In addition, the theory leads naturally to the expressions for back stresses. This work provides an additional example to show that the form of the intrinsic time is directly related to the form of the yield function.It is suggested that the coefficients of the quadratic yield function be determined from the yield stresses obtained from a set of tension tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号