首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mixed-mode dynamic crack growth along an arbitrarily smoothly varying path in functionally graded materials (FGMs) under thermo-mechanical loading is studied. The property gradation in FGMs is considered by varying shear-modulus, mass density, thermal conductivity and coefficient of thermal expansion exponentially along the gradation direction. Asymptotic analysis in conjunction with displacement potentials is used to develop the stress fields around propagating cracks in FGMs. Asymptotic temperature fields are developed first for the exponential variation of thermal conductivity and later these temperature fields are used to derive thermo-mechanical stress fields for a curving crack in FGMs. Using these thermo-mechanical stress fields, various components of the stresses are developed and the effect of curvature parameters, temperature and gradation on these stresses are discussed. Finally, using the minimum strain energy density criterion, the effect of curvature parameters, crack-tip speeds, non-homogeneity values and temperature gradients on crack growth directions are determined and discussed.  相似文献   

2.
Transient mixed-mode elastodynamic crack growth along arbitrary smoothly varying paths is considered. Asymptotically, the crack tip stress field is square root singular with the angular variation of the singular term depending weakly on the instantaneous values of the crack tip speed and on the mode-I and mode-II stress intensity factors. However, for a material particle at a small distance away from the moving crack tip, the local stress field will depend not only on the instantaneous values of the crack tip speed and stress intensity factors, but also on the past history of these time dependent quantities. In addition, for cracks propagating along curved paths the stress field is also expected to depend on the nature of the curved crack path. Here, a representation of the crack tip fields in the form of an expansion about the crack tip is obtained in powers of radial distance from the tip. The higher order coefficients of this expansion are found to depend on the time derivative of crack tip speed, the time derivatives of the two stress intensity factors as well as on the instantaneous value of the local curvature of the crack path. It is also demonstrated that even if cracks follow a curved path dictated by the criterion K 11 d =0, the stress field may still retain higher order asymmetric components related to non-zero local curvature of the crack path.  相似文献   

3.
The Coherent Gradient Sensor (CGS) is extended to the optical differentiation of specular, diffracted wave fronts leading to the combined measurement of in- and out-of-plane displacement field gradients. A derivation of the underlying optical interference principles is presented along with an analysis of the effective instrument sensitivity. In order to demonstrate the capabilities of the technique, experimental measurements of crack-tip deformation fields were conducted under various loading conditions corresponding to mode-I, mode-II, and mixed mode near-tip crack fields. The experimental procedures and results of these tests are presented as validation of the technique.  相似文献   

4.
Crack-tip stress fields for a stationary crack along or inclined to the direction of property gradation in functionally graded materials (FGMs) are obtained through an asymptotic analysis coupled with Westergaard’s stress function approach. The elastic modulus of the FGM is assumed to vary linearly along the gradation direction. The first six terms for a crack along the direction of property variation and first four terms for a crack inclined to the direction of property variation in the expansion of the stress field are derived to explicitly bring out the influence of nonhomogeneity on the structure of the stress field. Using these stress fields, contours of constant maximum shear stress and constant out of plane displacement are generated and the effect of inclination of property gradation direction on these contours is discussed. The strain energy density criterion is applied to obtain critical conditions for crack initiation and the effect of property gradation is discussed. It is shown that the materials with varying properties can offer more resistance to crack propagation and will suppress crack growth in some situations.  相似文献   

5.
A generalized elastic solution for an arbitrarily propagating crack in Functionally Gradient Materials (FGMs) is obtained through an asymptotic analysis. The shear modulus and mass density of the FGM are assumed to vary exponentially along the gradation direction. The mode mixity due to the inclination of property gradient is accommodated in the analysis through superposition of the opening and shear modes. Using this asymptotic solution, contours of constant out of plane displacement are generated. The effect of inclination of property gradation direction and the crack speed on these contours is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The plane strain problem of a crack in a functionally graded strip with a power form shear modulus is studied. The governing equation in terms of Airy's stress function is solved exactly by means of Fourier transform. The mixed boundary problem is then reduced to a system of singular integral equations and is solved numerically to obtain the stress intensity factor at crack-tip. The maximum circumferential stress criterion and the strain energy density criterion are both employed to predict the direction of crack initiation. Numerical examples are given to show the influence of the material gradation models and the crack sizes on the mode-I and mode-II stress intensity factors. The dependence of the critical kink-angle on the crack size is examined and it is found that the crack kink-angle decreases with the increase of the normalized crack length, indicating that a longer crack tends to follow the original crack-line while it is much easier for a shorter crack to deviate from the original crack-line.  相似文献   

7.
A novel experimental technique is developed for time-resolved detection and tracking of damage in the forms of delamination and matrix cracking in layered materials such as composite laminates. The technique is non-contact in nature and uses dual or quadruple laser interferometers for high temporal resolution. Simultaneous measurements of differential displacement and velocity at individual locations are obtained to analyze the initiation and progression of interfacial fracture and/or matrix cracking/delamination in a polymer matrix composite laminate system reinforced by graphite fibers. The measurements at multiple locations allow the speeds at which interfacial crack front (mode-I) or matrix cracking/delamination front (mode-II dominated) propagates to be determined. Experiments carried out use three-point bend configurations. Impact loading is achieved using a modified Kolsky bar apparatus with a complete set of diagnostics for load, deformation, deformation rate, and input energy measurement. This technique is used to characterize the full process of damage initiation and growth. The experiments also focused on the quantification of the speed at which delamination or damage propagates under primarily mode-I and mode-II conditions. The results show that the speed of delamination (mode-I) or the speed of matrix cracking/delamination (primarily mode-II) increases linearly with impact velocity. Furthermore, speeds of matrix failure/delamination under primarily mode-II conditions are much higher than the speeds of mode-I crack induced delamination under mode-I conditions.  相似文献   

8.
A new model, piecewise-exponential model (PE model), is developed to investigate the crack problem of the functionally graded materials (FGMs) with arbitrary properties. In the PE model, the functionally graded material is divided into some nonhomogeneous layers along the gradient direction of the properties, with each layer’s properties varying exponentially. By this way, the real material properties can be approached by a series of exponential functions. Since the real material properties are used on both surfaces of each nonhomogeneous layer, the nature of continuously varying properties of FGMs can be approached accurately. The influences of the local nonhomogeneity on the crack-tip fields can be fully considered. By using the new model, the fracture problem of a functionally graded strip with arbitrary properties and a crack vertical to the free surfaces is studied. The integral transform method, the theory of residues and the theory of singular integral equation are applied. Some representative samples with different kinds of nonhomogeneous properties are analyzed and the corresponding stress intensity factors (SIFs) are presented. It is shown that the PE mode is effective for investigating the crack problems of the FGMs with arbitrary properties.  相似文献   

9.
A detailed analytical and experimental investigation is presented to understand the dynamic fracture behavior of functionally graded materials (FGMs) under mode I and mixed mode loading conditions. Crack-tip stress, strain and displacement fields for a mixed mode crack propagating at an angle from the direction of property gradation were obtained through an asymptotic analysis coupled with a displacement potential approach. This was followed by a comprehensive series of experiments to gain further insight into the behavior of propagating cracks in FGMs. Dynamic photoelasticity coupled with high-speed photography was used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the FGMs. Dynamic fracture experiments were performed using different specimen geometries to develop a dynamic constitutive fracture relationship between the mode I dynamic stress intensity factor (K ID ) and crack-tip velocity ( ) for FGMs with the crack moving in the direction of increasing fracture toughness. A similar -K ID relation was also obtained for matrix material (polyester) for comparison purposes. The results obtained show that crack propagation velocities in FGMs were about 80% higher than the polyester matrix. Crack arrest toughness was found to be about 10% lower than the value of local fracture toughness in FGMs.  相似文献   

10.
This paper describes the development and application of a general domain integral method to obtain J-values along crack fronts in three-dimensional configurations of isotropic, functionally graded materials (FGMs). The present work considers mode-I, linear-elastic response of cracked specimens subjected to thermomechanical loading, although the domain integral formulation accommodates elastic–plastic behavior in FGMs. Finite element solutions and domain integral J-values for a two-dimensional edge crack show good agreement with available analytical solutions for both tension loading and temperature gradients. A displacement correlation technique provides pointwise stress-intensity values along semi-elliptical surface cracks in FGMs for comparison with values derived from the proposed domain integral. Numerical implementation and mesh refinement issues to maintain path independent J-values are explored. The paper concludes with a parametric study that provides a set of stress-intensity factors for semi-elliptical surface cracks covering a practical range of crack sizes, aspect ratios and material property gradations under tension, bending and spatially-varying temperature loads.  相似文献   

11.
Plastic yield at crack tips on singular slip-planes, inclined to the crack plane, has been studied under plane-strain conditions for combined tension, hydrostatic stress, and in-plane shear. The singular integral equation, which represents the equilibrium condition of edge dislocations on the slip-planes, is transformed into a Fredholm integral equation in order to avoid difficulties that occur with its numerical solution. Results are presented for the slip-band length, the plastic crack-tip opening displacement, stress fields, and crack-opening contours. A series expansion of the results obtained numerically confirms approximate analytical expressions given by J.R. Rice (1974), up to the third-order in the applied stresses. The results of finite element methods agree with values of the crack-tip opening displacement obtained here to within 10 per cent. Ahead of the crack tip, the principal tensile stresses exceed the principal shear stresses by a factor of 10, approximately.  相似文献   

12.
The Somigliana formula is used to reduce an arbitrary elastic crack problem to a system of three integral equations for the components of displacement discontinuity. For the case of a penny shaped crack situated in an infinite isotropic medium with the crack faces subjected to arbitrary tractions, the integral equations are solved explicitly. In particular integral formulae are obtained for the stresses on the plane of the crack beyond the crack-tip, and hence for the stress intensity factors. The special case of uni-directional shear traction on the crack is examined.  相似文献   

13.
The traditional compliance-based criterion of the crack stability in fracture mechanics states that the stability of the crack propagation in the different specimens under different fracture modes is determined by the derivative of the energy release rate with respect to the crack length. In this work the compliance-based criterion is verified by experiments performed on fracture mechanical systems. The large number of experiments carried out on different (mode-I, mode-II, mixed-mode I/II and mixed-mode II/III) specimens shows that the stability of the crack propagation depends on the derivative of the critical displacement (the displacement at the point of fracture initiation) with respect to the crack length. The experimentally established limits of crack stability were compared to the limits of the traditional criterion and it is shown that in each case they lead to approximately the same restriction considering the stable zone of crack propagation.  相似文献   

14.
15.
We study the contact interaction of the faces of a finite rectilinear crack under harmonic compression–expansion and shear waves incident at an arbitrary angle. An iterative algorithm based on the variational principles of elastic theory is used. The contact interaction and displacement discontinuity of the crack faces are analyzed. The crack-tip stress intensity factors are calculated. The results are compared with those obtained regardless of the contact interaction  相似文献   

16.
Nucleation of microcracks can be detected and analyzed by acoustic emission (AE), by which crack kinematics of locations, types and rientations are quantitatively estimated. The procedure was applied to clarify mechanisms of corrosion cracking. Based on fracture mechanics, numerical analysis was conducted by the boundary element method (BEM). Relations between the stress intensity factors and crack types were investigated by BEM solutions. In experiments, four types of crack patterns were nucleated by employing expansive agent. Following the surface crack, the diagonal crack and/or the horizontal crack propagated. The internal crack extended after the surface crack was terminated. Depending on the crack types, contributions of mode-I and mode-II were varied. According to AE results, four crack patterns observed differently consisted of tensile, mixed-mode and shear cracks. It is demonstrated that mechanisms of corrosion cracking in concrete are dominantly of mode-I failure along with a minor contribution of mixed-mode and mode-II.  相似文献   

17.
18.
Finite deformation in the crack-tip zone of plastic deformation is investigated for Mode-I opening of a crack in a thin sheet of elasto-plastic material. The material obeys the von Mises yield criterion in the true stresses, and the stretching tensor satisfies a flow law of the Prandtl-Reuss type. Incompressibility and a state of generalized plane stress are assumed. It is assumed that linearized elasticity applies outside the zone of plastic deformation. On the crack-line between the crack-tip and the elastic—plastic boundary, two distinct regions have been recognized: the near-tip zone and the intermediate region. In the near-tip zone the fields are controlled by the radius of curvature of the blunted crack-tip. Here the stress field has been approximated by classical plane stress results. It has been assumed that the crack-line stresses may be taken as uniform in the intermediate region. In each region, deformation variables have been determined by the use of the constitutive relations, and the results have been matched to the corresponding quantities in the neighboring region(s). In this manner expressions have been constructed for the deformation gradients on the crack-line, in terms of the distance to the crack-tip in the deformed configuration, the yield stress in shear, and the stress intensity factor of linear elastic fracture mechanics.  相似文献   

19.
Transient crack growth in an elastic/power-law creeping material is investigated under antiplane shear loading and small-scale-yielding conditions. At time t = 0 the solid is suddenly loaded far from the crack by tractions that correspond to the elastic crack-tip stress distribution. At that time the crack begins to propagate at a constant velocity. The stress fields evolve in a complex manner as the crack propagates due to the competing effects of stress relaxation due to constrained creep and stress elevation due to the instantaneous elastic material response to crack growth. From detailed finite element calculations it is shown that these fields can be approximated by a simple matching of three asymptotic singular crack-tip solutions. A characteristic stress, distance and time are defined for this problem which provide a normalization that accounts for any crack velocity, loading and all material properties for a given creep exponent n. Results are presented for crack-tip stresses, strains, crack opening displacements and creep zones.  相似文献   

20.
The stress intensity factor of a half-plane crack extending non-uniformly in an isotropic elastic solid subjected to stress wave loading is determined. A plane stress pulse strikes the crack at time t = 0, the wavefront being parallel to the plane of the crack. At some arbitrary later time t = τ, the crack begins to extend at a non-uniform rate. It is found that the stress intensity factor is a universal function of instantaneous crack-tip velocity times the stress intensity factor for an equivalent stationary crack. An energy rate balance fracture criterion is applied to obtain an equation of motion for the crack tip. The delay time between the arrival of the incident pulse and the onset of fracture is also calculated for this fracture criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号